通过分析现有图象雅可比矩阵的在线辨识方法, 提出一种新的辨识思路。将雅可比矩阵的在线
估计转化为系统的状态观测, 并设计了相应的Kalman-Bucy滤波估计算法。以双目立体视觉反馈下的
运动目标跟踪任务为例, 通过仿真和实验说明了所提出方法的有效性。
H∞滤波通常应用于系统模型和噪声特性不确定的环境,存在滤波精度不高的缺 点.通过对H∞ 滤波引入闭环修正,在不影响滤波鲁棒性的前提下,有效地提高了系统精度.无源北斗/SINS组合导航系统的动态跑车实验结果表明,闭环H∞ 滤波下的组合导航精度优于相同滤波误差模型下的闭环Kalman滤波,并且具有参数设置简单,滤波稳定性强的优点.