《GPS信号FFT捕获的GPU实现》这篇论文探讨了如何利用GPU加速GPS信号的FFT捕获过程,以缩短接收机的冷启动时间。在GPS定位系统中,信号捕获是关键步骤,它涉及到码分多址(CDMA)技术下的伪随机码相位和载波多普勒频移的搜索。FFT(快速傅里叶变换)捕获算法因其并行计算能力,能够快速搜索多个码相位,从而提高捕获速度。 文中首先介绍了FFT捕获的基本原理,即通过本地复现的码信号和载波信号与输入信号进行相关运算,找到卫星信号的码相位和多普勒频移。此过程是一个二维搜索,需要在大量可能的码相位和频率中寻找匹配。FFT算法在此过程中可以同时处理多个码相位,极大地提高了计算效率。 接着,论文对比了GPU和FPGA(现场可编程门阵列)的特点。尽管FPGA常用于并行处理,但GPU在并行计算方面表现出色,尤其在神经网络、模糊系统等领域有广泛应用。文献中提到,基于GPU的一个通道内各频点的捕获可以并行进行,相比于CPU,捕获时间大幅缩短。 论文提出了一种新的并行捕获方案,不仅在每个通道内部进行并行处理,还在各个通道之间也实现了并行化,这将捕获速度进一步提升。通过实测的GPS中频数据验证,该方案的捕获结果与基于CPU的方案相比,精度相同但时间缩短了约1/60,显著提升了捕获效率。 在实现GPU并行捕获的过程中,文章还对GPU与FPGA进行了应用比较分析,尽管两者都能进行并行计算,但GPU在通用计算任务上的优势更加明显。因此,GPU成为了实现快速FFT捕获的理想选择。 这篇论文提供了一个利用GPU优化GPS信号FFT捕获的高效方案,对于缩短GPS接收机冷启动时间具有重要意义,特别是在需要快速定位的应用场景下,这种技术的应用价值尤为突出。通过并行计算的优化,未来GPS系统的性能有望得到进一步提升。
2024-07-03 16:34:31 308KB GPS 定位系统 系统开发 参考文献
NVIDIA TensorRT 是一款用于高性能深度学习推理的 SDK,包含深度学习推理优化器和运行时,可为推理应用程序提供低延迟和高吞吐量。YOLOv10是清华大学研究人员近期提出的一种实时目标检测方法,通过消除NMS、优化模型架构和引入创新模块等策略,在保持高精度的同时显著降低了计算开销,为实时目标检测领域带来了新的突破。 该代码将演示如何使用NVIDIA TensorRT C++ API 部署YOLOv10目标检测模型,实现模型推理加速。经过测试,推理可以实现2ms所有,全流程包含前后处理仅有15ms左右。 此处提供了项目源码以及模型文件。
2024-06-06 15:21:53 24.38MB
1
蒙特卡洛eXtreme(MCX)-CUDA版 作者:方千千(neu.edu的q.fang) 许可证:GNU通用公共许可证版本3(GPLv3) 版本:1.8(v2020,狂暴费米子) 网站: : 表中的内容: 什么是新的 MCX v2020代表着快速,通用和功能丰富的开源Monte Carlo 3D光子模拟器开发的新里程碑。 它在功能和稳定性方面都进行了许多改进。 我们要特别强调以下主要新增功能: 内置基准,易于新用户测试和采用 过渡到JSON / JNIfTI输入/输出文件以方便数据共享 使用二进制量数据将模拟导出为JSON 适用于MCXStudio / MCX / MMC /
2024-05-22 17:40:11 3.96MB pascal monte-carlo matlab cuda
1
本资源属于PPT免费内容,全英文,方便双语班教学使用,另外,对这方面感兴趣的童鞋或者老师可以免费下载使用。
2024-05-22 11:19:24 2.89MB CPU PPT
1
C++ amp 加速计算 中文 扫描版 完整 不套路 无水印 欢迎讨论
2024-05-22 10:22:32 55.79MB C++11 GPU Microsoft
1
CUDA并行程序设计 GPU编程指南 522页 + CUDA C编程权威指南_源码 GPU编程 并发编程
2024-04-24 18:17:00 1.43MB 编程语言
1
matlab最简单的代码 HandwrittenNumeralRecognition_ANN_CUDA Handwritten numeral recognition project using BP ANN with CPU & GPU (CUDA). 公告板 matlab下面的数据文件我导成字符型文件了50M左右4个文件,存在46/Tmp/CUDA_ANN_DATA下,要用先同步一下。 第一次文件X.dat文件出问题了,中间貌似有错数据。我这边又生成了,晚上过去传46。 正确文件生成方法如下: f=fopen('X2.dat','w'); for i = 1:5000 for j= 1:400 fprintf(f,'%f ',X(i,j)); end end map函数加了索引参数。用法如下: Matrix _X2(new float[X.row*(1 + X.col)], X.row, X.col + 1); Matrix X2 = _X2.map([&](float, int row, int col){ return col>0 ?
2024-04-15 18:14:54 2.03MB 系统开源
1
深度学习框架,gpu版本的pytorch,在python3.5+ cuda10.0 + cudnn7.6+pytorch1.2.0 gpu_torcvision0.4.0
2024-04-07 22:23:24 714.94MB 深度学习,pytorch gpu
1
《Multicore and GPU Programming》这本书是一本非常好的并行计算学习资源。以下是我对这本书的简要评价: 优点: 1. 全面性强:书中涵盖了多核和GPU计算的基础概念、编程模型、算法实现以及性能优化等方面,使读者可以全面了解并行计算的基础知识和实践技巧。 2. 实用性强:书中讲解的并行计算技术都是实际开发中常用的,通过实例代码的演示,可以帮助读者快速掌握如何在项目中应用这些技术。 3. 现代化:书中使用了现代C++和CUDA的特性,如Lambda表达式、CUDA C++ kernel函数等,使得代码更加简洁、易读、安全。 4. 丰富的代码示例:书中提供了丰富的代码示例,涵盖了多种并行计算技术的实现,包括OpenMP、CUDA、Intel TBB等,帮助读者更好地理解每个技术的实现过程。 5. 深入浅出:书中讲解的内容深入浅出,准确把握读者的学习需求和水平,使得读者可以快速掌握并行计算的基础知识和实践技巧。
2024-04-03 11:18:13 22.43MB
1
tensorflow_gpu-2.8.0-cp38-cp38-win_amd64.whl.rar python 3.8.3 tensorflow 2.8.0 Gpu版本 去掉后缀.rar pip install tensorflow_gpu-2.8.0-cp38-cp38-win_amd64.whl 既可以使用
2024-03-25 23:16:24 417.66MB tensorflow python 人工智能 深度学习
1