Scala and Spark for Big Data Analytics pdf 版本 2017年 Packt
2022-04-16 17:14:26 39.83MB Spark Scala 大数据
1
饲料定量数据分析虚拟体验计划 我提交的该程序的3个任务: 数据准备和客户分析, 实验和提升测试,以及 分析和商业应用。 依存关系 语言:Python 3.8 软件包:pandas,matplotlib,mlxtend,datetime,sklearn,scipy 项目概述和任务见解 该虚拟体验计划涉及分析在超市购买芯片的情况。 该项目的目的是通过新的布局来评估不同客户的购买行为和试用商店的性能,以提供对客户的客户偏好的见解,并提供有关试用是否成功的建议。 任务1:数据准备和客户分析 文件:QVI_task1.ipynb,读取QVI_purchase_behaviour.csv和QVI_transaction_data.xlsx 数据清理:将日期从整数格式更改为日期时间数据类型,删除了Salsas和异常值 分析不同客户的购买行为(总销售量,分组为: LIFESTAGE:客户属性,用于
1
Irfan Elahi - Scala Programming for Big Data Analytics(2019)
2022-04-06 02:48:31 7.47MB scala big data 开发语言
与Frey和Osborne(2013)的预测相反,会计行业将面临灭绝,我们认为会计师仍然可以在大数据分析的世界中创造价值。 为了提出这一论点,我们提供了一个基于结构化/非结构化数据和问题驱动/探索性分析的概念框架。 我们认为会计师已经擅长于结构化数据的问题驱动分析,在非结构化数据的问题驱动分析中处于领先地位,并且可以支持数据科学家对大数据进行探索性分析。 我们的论点基于两个Struts:会计师熟悉结构化数据集,简化了向使用非结构化数据的过渡,并且拥有业务基础知识。 因此,我们认为大数据分析是对会计师技能和知识的补充,而不是取代会计师。 但是,教育者,标准制定者和专业机构必须调整其课程,标准和框架,以适应大数据分析的挑战。
2022-03-06 09:28:54 340KB big data data analytics
1
Data Analytics Practical Guide to Leveraging the Power of Algorithms,Data Science,Data Mining,Statistics,Big Data,and Predictive Analysis to Improve Business,Work,and Life
2022-02-17 19:10:36 1.29MB 数据挖掘 big data 人工智能
1
Big Data Science & Analytics: A Hands-On Approach By 作者: Arshdeep Bahga – Vijay Madisetti ISBN-10 书号: 0996025537 ISBN-13 书号: 9780996025539 Edition 版本: 1 出版日期: 2016-04-15 pages 页数: (542 ) The book is organized into three main parts, comprising a total of twelve chapters. Part I provides an introduction to big data, applications of big data, and big data science and analytics patterns and architectures. A novel data science and analytics application system design methodology is proposed and its realization through use of open-source big data frameworks is described. This methodology describes big data analytics applications as realization of the proposed Alpha, Beta, Gamma and Delta models, that comprise tools and frameworks for collecting and ingesting data from various sources into the big data analytics infrastructure, distributed filesystems and non-relational (NoSQL) databases for data storage, processing frameworks for batch and real-time analytics, serving databases, web and visualization frameworks. This new methodology forms the pedagogical foundation of this book. Part II introduces the reader to various tools and frameworks for big data analytics, and the architectural and programming aspects of these frameworks as used in the proposed design methodology. We chose Python as the primary programming language for this book. Other languages, besides Python, may also be easily used within the Big Data stack described in this book. We describe tools and frameworks for Data Acquisition including Publish-subscribe messaging frameworks such as Apache Kafka and Amazon Kinesis, Source-Sink connectors such as Apache Flume, Database Connectors such as Apache Sqoop, Messaging Queues such as RabbitMQ, ZeroMQ, RestMQ, Amazon SQS and custom REST-based connectors and WebSocket-based connectors. The reader is introduced to Hadoop Distributed File System (HDFS) and HBase non-relational database. The batch analysis chapter provides an in-depth study of frameworks such as Hadoop-MapReduce, Pig, Oozie, Spark and Solr. The real-time analysis chapter focuses on Apache Storm and Spark Streaming frameworks. In the chapter on interactive querying, we describe with the help of examples, the use of frameworks and services such as Spark SQL, Hive, Amazon Redshift and Google BigQuery. The chapter on serving databases and web frameworks provide an introduction to popular relational and non-relational databases (such as MySQL, Amazon DynamoDB, Cassandra, and MongoDB) and the Django Python web framework. Part III focuses advanced topics on big data including analytics algorithms and data visualization tools. The chapter on analytics algorithms introduces the reader to machine learning algorithms for clustering, classification, regression and recommendation systems, with examples using the Spark MLlib and H2O frameworks. The chapter on data visualization describes examples of creating various types of visualizations using frameworks such as Lightning, pygal and Seaborn.
2022-01-20 16:30:49 108.43MB DESIGN
1
糖尿病预测:使用Cima决策树算法和K-最近模型,根据患者的实验室测试结果变量(例如葡萄糖,血压等​​),使用Pima Indians糖尿病数据集来预测患者是否患有糖尿病。 Python-Scikit学习,SciPy,熊猫,MatPlotLib
2021-12-16 17:10:02 1.87MB python data analytics scikit-learn
1
Feature Engineering for Machine Learning and Data Analytics 英文无水印原版pdf pdf所有页面使用FoxitReader、PDF-XChangeViewer、SumatraPDF和Firefox测试都可以打开 本资源转载自网络,如有侵权,请联系上传者或csdn删除 查看此书详细信息请在美国亚马逊官网搜索此书
2021-11-28 17:28:23 22.33MB Feature Engineering Machine Learning
1
【2018新书】A General Introduction to Data Analytics(数据分析导论)
2021-11-14 20:24:34 7.03MB 数据分析 大数据
1
亚马逊云科技 数据分析(Data Analytics)白皮书合集,共25份。 云采用框架概述 云上的 BearingPointBeyond Infonova DBP 数字商务平台 Redshift:成本优化 亚马逊云科技上的 Cerner HealtheDataLab 简介 亚马逊云科技上的大数据分析选项 亚马逊云科技上的原生云数据虚拟化 亚马逊云科技上的运营商级移动分组核心网络 Amazon Web 服务概述 设置多用户环境(用于课堂训练和研究) 城市如何不再浪费资金,实现加速发展和创新 调整云数据仓库的大小 基于强大 Random Cut Forest 的流异常检测 将 Microsoft Power BI 与 云结合使用 将亚马逊云科技资源迁移到新区域 使用 Amazon Elasticsearch Service 记录和监控(几乎)所有资源 使用 Amazon Kinesis 流式处理亚马逊云科技上的数据解决方案 使用亚马逊云科技服务的基因组学数据传输、分析和机器学习 适合新手的成本建模湖内数仓 适用于批处理和流式处理的 Lambda 架构 数字化转型清单:利用技术打破ZF的创新壁垒 无家可归和技术 在迁移到亚马逊云科技时了解应用程序的准备情况 在亚马逊云科技上部署 SAS 的最佳实践 在亚马逊云科技上构建媒体和娱乐预测分析解决方案 针对阿片类药物流行病危机的医疗保健数据分析框架
2021-11-11 21:07:08 17.88MB DataAnalytics 数据分析