STM32 HAL库 DAC例程 包括: STM32Cube MX配置; 三个DAC例子: 输出额定电压; 输出三角波 + 定时器; 输出正弦波 + DMA + 定时器; 结合博客详细介绍了如果使用
2023-04-08 16:48:53 24.86MB stm32
1
静态技术规格中,我们探讨了静态技术规格以及它们对DC的偏移、增益和线性等特性的影响。这些特性在平衡双电阻 (R-2R) 和电阻串数模转换器 (DAC) 的各种拓扑结构间是基本一致的。然而,R-2R和电阻串DAC的短时毛刺脉冲干扰方面的表现却有着显著的不同。  我们可以在DAC以工作采样率运行时观察到其动态不是线性。造成动态非线性的原因很多,但是影响的是短时毛刺脉冲干扰、转换率/稳定时间和采样抖动。  用户可以在DAC以稳定采样率在其输出范围内运行时观察短时毛刺脉冲干扰。图1显示的是一个16位R-2R DAC,DAC8881上的此类现象。  图1  这个16位DAC (R-2R) 输出显示了7F
1
原创例程:STM32模拟SPI总线驱动DAC8552双路16位数模转换(DAC)芯片。以TM32CUBEIDE开发环境和STM32F103C6T6芯片为例,实现STM32驱动DAC芯片输出设定的电压。具体介绍见CSDN博文《STM32模拟SPI时序控制双路16位数模转换(16bit DAC)芯片DAC8552电压输出》 : https://editor.csdn.net/md/?articleId=128014125
2023-03-27 20:22:55 63.87MB STM32 DAC DAC8552 双路16位
1
STM32 TIM通用定时器触发ADC DMA TIM基本定时器触发DACSTM32 TIM通用定时器触发ADC DMA TIM基本定时器触发DACSTM32
2023-03-19 15:48:48 6.47MB STM32 ADC DAC 通用定时器
1
这是一部非常优秀的材料,被多大多数大学和公司选用,找了好久才找到,希望能对大家有用
2023-03-18 13:49:18 48KB USRP DAC
1
大多数的ADC都有模拟地(AGnd)和数字地(DGnd)引脚,但是太多的工程师和datasheet作者都不确定该怎么进行连接。这篇文章考虑了这些引脚电流流动的本质,内部及外部噪声对于精确数据转换的影响,不同的接地,去耦和大多数情况下使转换器工作在最好状态的建议及证明。   数据转换器(ADCs和DACs)是精确,敏感的器件,它的模拟接口易受噪声影响(这篇文章的大部分建议是对于ADCs和DACs)。   混合信号系统(同时拥有模拟和数字处理的系统)经常有分离的模拟地和数字地,将易受噪声影响的模拟信号与通常产生噪声的数字地隔离开来。   数据转换器——也就是模拟到数字的转换器(ADCs)和数字到模拟的转换器(DACs)——是精确且易受噪声影响的敏感器件。   除非另外说明,本文中的所有建议适用于ADCs和DACs。   在应用数据转换器的系统中,一个普遍的问题是如何接地使模拟信号状态最好。包括模拟信号和数字信号处理的混合信号系统通常有分离的数字地和模拟地,来避免数字部分的噪声耦合到敏感的模拟信号上。对这些地进行单点汇合,有时称作星形点(star point),汇合点通常邻近电源。   ADCs和DACs通常有分离的模拟地引脚和数字地引脚(分别标作AGND和DGND)。它们应该连在一起并接到系统的模拟地,尽管datasheet有其它建议。   ADCs和DACs通常有分离的模拟地引脚和数字地引脚,分别标作AGND(或模拟地)和DGND(或数字地),并且datasheet通常建议这两种引脚应该在器件外连在一块。这引起一个问题——然后怎么将它们连到系统的模拟和数字地,而不引起地环路。   解决办法很简单——不要这样做!它们应该都连到系统模拟地。   尽管datasheet建议它们应该分别连到系统的模拟地和数字地,但通常更好的做法是忽略这个建议,将它们连在一块再接到系统的模拟地。   一个哲学问题!   AGND和DGND应该都连到系统模拟地平面。描述为DGND的引脚并不意味着它应该连到系统数字地。   这当然引起一个问题,为什么一个指定为数字地的引脚应该接到系统的模拟地。   这就是哲学家所说的“范畴错误”(category mistake)。简单地说,当我们假设同样的文字在不同上下文中表示同样的意思时,我们就犯了一个范畴错误。这个引脚不是因为接到系统数字地而称为数字地引脚,而是这个引脚有转换器的数字电路的地电流流过。   回顾转换器,制造商很可能对这些引脚用了不同的名字来避免混淆,但几十年后的今天再改已经太晚了。   为什么不用一个引脚? 在大电流或高频情况下,引线的阻抗不允许用一个地引脚。低电流或低频转换器经常只有一个引脚。   如果整个转换器只有一个地引脚不会有问题,但粘合线(bond-wire)和封装引脚的阻抗相当大,由数字部分电流流过公共地引脚引起的电压足以使转换器的模拟信号状态变差。实际上在高频转换器中有几个模拟地引脚和几个数字地引脚并行连接,来减小引脚阻抗的影响。   为什么必须将它们在芯片外连接? X点的地噪声通过寄生电容影响转换器的模拟电路。可以通过减小DGND,AGND和系统模拟地之间的阻抗来减小此噪声。   数字电路的噪声可以通过寄生电容耦合到转换器的模拟部分。如果框图中的X点的噪声电压可以尽可能减小,那耦合地噪声也会减小。   这可以通过直接将数字地接到系统模拟地来完成。如果DGND接到系统数字地或通过一个电阻或电感接到系统模拟地,X点相对于转换器的模拟电路的噪声电压会增加——对干扰也是一样。
2023-03-10 22:54:08 37KB 模拟/电源
1
基于STM32语音输出保姆级教程---超详细 基于STM32播放存放在FLASH里面的WAVE格式音频,用双缓存的方式输出,超级流畅,占用资源超级少。 需要有FLASH,并且已经把文件存放在FLASH里面,具体怎么把音频存入FLASH可以参考我另一篇文章。 调用只需要两个步骤: 1.上电时,调用void Audio_Init(void)函数,进性初始化整个语音播放模块 2.在循环里面或者在线程里面调用void WAVE_update_data(void)函数,这个函数是缓冲函数,双缓存缓冲的方式,从flash里面读取数据进性缓存 FLASH驱动需要自己去完善 其他还有不明白的可以私信我,第一时间回复
2023-03-10 18:28:28 11KB STM32 语音 DAC
1
描述   LTC:registered:2754 是一个四通道 12 位和 16 位乘法串行输入、电流输出数模转换器系列。它们采用单 3V 至 5V 工作电源,并在整个温度范围内保证单调性。在未做任何调节的情况下,LTC2754A-16 在整个温度范围内提供了完整的 16 位性能 (±1LSB INL 和 DNL,值)。这些 SoftSpanTM DAC 提供了 6 种可通过三线式 SPI 串行接口来设置的输出范围 (高达 ±10V),也可通过引脚搭接在一种输出范围内运作。   所有片内寄存器的内容 (包括 DAC 输出范围设定值) 仅需一个指令周期便能完成验证;而且,如果您改变了任何寄存器,则将在下一个指令周
2023-03-08 19:35:30 256KB LTC2754-16 - 四通道 16
1
使用STM32F103的DAC功能播放WAV文件,WAV格式为8k,8bit.文件内附程序及wav格式转换说明,STM32输出口为PA5,接喇叭,就会播放声音。
2023-03-03 10:12:40 17.48MB STM32F103 DAC WAV
1
可以参考下
2023-02-25 21:10:31 8KB DAC
1