使用深度学习检测疟疾 :mosquito: :microbe: 参与者的Hack 2020是一项计划,可帮助学生利用OPEN SOURCE成长。 HakinCodes的这项倡议通过为各种各样的OPEN SOURCE项目做出贡献以及与导师和组织团队进行互动的机会,为您提供了一个最佳平台,以提高您的技能和能力。 :pushpin: 介绍 该机器学习Web应用程序利用两层卷积神经网络来处理细胞图像,并以近95%的准确度预测它们是否为疟疾。 用于处理深度学习算法的来自美国国家医学图书馆的官方NIH网站,该网站是来自疟疾筛查研究活动的稀薄血液涂片图像中分段细胞的存储库。 :bullseye: 项目目的 在疟疾不再流行的地方(例如在美国),医疗保健提供者可能对该疾病不熟悉。 看到疟疾患者的临床医生可能会忘记在潜在的诊断中考虑疟疾,而不订购所需的诊断测试。 实验室工作人员可能缺乏疟疾经验,并且在显微镜下检查血液涂片时无法发现寄生虫。 疟疾是一种急性发热性疾病。
2021-11-13 15:49:34 92.85MB deep-learning flask-application malaria cnn-keras
1
emnist:使用卷积神经网络对EMNIST数字进行分类
1
CNNs-CHB-MIT 该项目是关于将CNN应用于来自CHB-MIT的EEG数据以预测癫痫发作。 这是UNIVERSITA DI CAMERINO分配给计算机科学学士学位的小组项目。 该项目的目的是尝试复制论文中获得的结果: 该算法包括创建数据的频谱图,然后将它们与CNN模型一起使用以预测癫痫发作。 有关更多信息,请参见和 。 这两个文件分别是意大利语的作品介绍和关系。 入门 先决条件 在该项目中,anaconda用于管理软件包。 所需包装: keras 2.2.2 python 3.6.6 张量流1.10.0 matplotlib 麻木 pyedflib 科学的 为了评估网络,进行培训和测试,GPU用于快速评估。 通过使用CPU,训练时间比使用GPU慢得多。 GPU所需的软件包: 张量流 对于GPU的使用,此链接对于安装Ubuntu 18.04 LTS的所有驱
2021-09-14 18:08:19 4.3MB seizure-prediction cnn-keras eeg-analysis chb-mit
1
根据已经训练好的word2vec词向量,对于文本相似度进行相关分析
2021-08-29 21:43:43 6KB lstm cnn keras
1