在本文中,我们提出了一种多尺度卷积神经网络TSception,用于从脑电图(EEG)中学习时域特征和空间不对称性。TSception由动态时间层、非对称空间层和高层融合层组成,这些层同时学习时间和通道维度上的区别表示。动态时间层由多尺度一维卷积核组成,其长度与脑电信号的采样率有关,学习脑电的动态时间和频率表示。非对称空间层利用情绪反应背后的非对称神经激活,学习辨别性的全局和半球表征。学习到的空间表示将通过高级融合层进行融合。使用更广义的交叉验证设置,在两个公开可用的数据集DEAP和MAHNOB-HCI上对所提出的方法进行了评估。该网络的性能与之前报道的方法进行了比较,如SVM、KNN、FBFgMDM、FBTSC、无监督学习、DeepConvNet、ShallowConvNet和EEGNet。在大多数实验中,与比较的方法相比,我们的方法获得了更高的分类精度和F1分数。