双频Buck变换器是一种电源转换器,常用于直流到直流(DC-DC)转换,特别是在需要高效能、高功率密度以及宽输入电压范围的应用中。这种变换器通过改变开关频率来实现输出电压的调节,从而提高了系统的动态响应和效率。在本资料“双频Buck变换器工作模式.kdh”中,我们可能会探讨该变换器的两种主要工作模式:连续导通模式(CCM)和断续导通模式(DCM),以及可能涉及的MATLAB仿真。 **连续导通模式(CCM)** 在连续导通模式下,开关器件(如MOSFET)在整个开关周期内都保持导通,使得电感电流在整个周期内连续。在CCM中,电感电流在开关关闭时不会降至零,这允许更精确的电流控制,并且在高频操作时提供了更好的电磁兼容性。然而,CCM的缺点是存在较大的开关损耗,因为开关器件在每个周期内都需要进行两次开关动作。 **断续导通模式(DCM)** 与CCM相反,在DCM中,电感电流在开关周期结束时降至零。在下一个周期开始前,电感会通过负载放电。DCM通常在轻载或低输入电压条件下发生,因为它可以减少开关损耗,提高转换器效率。但是,DCM下的输出电压纹波较大,控制策略也相对复杂,因为电感电流的测量和预测需要考虑更多的边界条件。 **双频工作模式** 双频Buck变换器的工作原理是结合了CCM和DCM的优点。在高负载或特定电压范围内,变换器可能工作在CCM,提供稳定的输出和良好的动态响应;而在低负载或特定电压区间,它切换到DCM,以降低开关损耗并提高效率。这种双频策略可以优化整个工作范围内的性能,尤其适用于需要广泛负载条件支持的系统。 **MATLAB仿真** MATLAB是一个强大的数学和工程计算软件,常用于电源转换器的设计和分析。在“双频Buck变换器工作模式.kdh”文件中,可能包含了使用MATLAB Simulink建立的模型,用以模拟和研究变换器在不同工作模式下的行为。通过仿真,设计者可以调整参数,如开关频率、占空比、电感值和电容值,以优化性能指标,如效率、纹波、动态响应等。 在实际应用中,理解双频Buck变换器的工作模式对于优化电路设计、提高系统性能至关重要。MATLAB工具的使用可以提供直观的模型可视化和精确的性能预测,为电源转换器的开发和优化提供有力的支持。通过深入学习和掌握这些知识,工程师能够更好地设计出满足特定需求的高效双频Buck变换器。
2025-05-25 20:52:09 1.21MB matlab
1
内容概要:本文详细介绍了如何利用MATLAB/Simulink进行电力电子仿真的具体方法和技术细节。首先讲解了单相和三相全桥整流电路的构建,强调了触发脉冲相位控制、滤波器选择以及参数调整的重要性。接着探讨了电压型逆变电路的设计,着重于PWM生成策略、死区时间和滤波器的应用。随后讨论了斩波电路(尤其是Buck和Boost电路),涉及占空比调节、PID控制器应用及其稳定性优化。最后介绍了交流调压电路的两种方式——相控式和斩控式的实现方法,并提供了仿真优化技巧,如采用理想开关模型、调整求解器等。 适合人群:具有一定电力电子基础知识和MATLAB/Simulink使用经验的研发人员、学生或工程师。 使用场景及目标:适用于希望深入理解电力电子设备工作原理并通过仿真手段验证设计方案的研究者;旨在帮助使用者掌握从模型建立到参数调优的完整流程,提高仿真的准确性和效率。 其他说明:文中不仅提供了详细的步骤指导,还包括了许多实用的小贴士和注意事项,有助于解决常见的仿真难题。同时,附带了一些具体的代码片段供参考,便于快速上手实践。
2025-05-10 15:26:01 883KB 电力电子 斩波电路
1
双向BUCK BOOST电路仿真:基于VDCM控制与电压电流双闭环控制的直流变换器惯性与阻尼特性研究,基于虚拟直流电机控制的双向BUCK BOOST电路仿真:增强直流微电网惯性阻尼与电压电流稳定性分析,双向buck boost电路仿真(VDCM控制 电压电流双闭环控制) 利用了传统电机的阻尼和旋转惯量以及励磁暂态特性,因此在负载功率变化时,输出电压更容易受到影响。 随着交流同步机在交流微电网中的逐渐应用,其思想也被用于dc dc变器中,实现了VDCM控制,从而增加了直流微电网的惯性和阻尼。 该仿真应用双向BUCK BOOST电路,采用直流电机(VDCM)控制策略,与传统pi对比提升了直流变器惯性阻尼特性。 可以看到负载输出的电压电流稳定 2018b版本及以上 ,双向buck_boost电路仿真; VDCM控制; 电压电流双闭环控制; 直流微电网; 惯性和阻尼; 2018b版本以上,基于VDCM控制的双向BUCK BOOST电路仿真:增强惯性与阻尼特性的DC微电网应用
2025-05-08 07:59:28 201KB istio
1
标题中的“pv光伏发电带buck电路接入蓄电池”指的是利用光伏(PV)系统产生的电力,通过Buck转换器调节电压,然后将电能储存到蓄电池中。这个过程涉及到多个技术领域,包括太阳能发电、电源管理、电力电子以及控制策略。下面我们将深入探讨这些知识点。 1. **光伏(PV)发电**:光伏效应是太阳能电池的基础,它能够将太阳光转化为电能。PV板由光伏电池组成,当光照在电池上时,会生成电子流,形成电流。光伏系统通常包括PV面板、逆变器和连接设备,用于将直流电转换为交流电供电网或负载使用。 2. **最大功率点跟踪(MPPT)**:MPPT是一种优化光伏系统效率的技术,它能够实时监测光伏阵列的输出功率,并调整工作点,确保在各种光照和温度条件下获取最大功率。在本系统中,MPPT算法可能被用于调整Buck电路,使光伏电池始终工作在其最佳效率点。 3. **Buck电路**:Buck变换器是一种降压型DC-DC转换器,通过开关元件(通常是MOSFET)的导通和关断来改变输出电压。在光伏充电系统中,Buck电路用来调节光伏电池的高电压至适合蓄电池充电的较低电压,同时保持充电电流恒定或根据需要进行调节。 4. **Simulink仿真**:文件名中的"PV_MPPT_Battery_Buck_Chargning.slx"表明使用了MATLAB的Simulink工具进行系统建模和仿真。Simulink提供了一个图形化界面,可以构建、模拟和分析复杂的动态系统,如电力电子系统。在这个案例中,可能包含了光伏阵列、MPPT控制器、Buck变换器和电池模型的仿真模型。 5. **电池充电策略**:为了保护蓄电池,延长其寿命,充电过程需要遵循特定的策略,例如恒流充电、恒压充电和浮充等阶段。Buck电路的控制策略应与这些充电阶段相协调,以确保安全、高效地将能量注入蓄电池。 6. **license.txt**:此文件可能是软件许可文件,提供了关于使用Simulink模型或相关代码的法律条款和限制。 这个系统设计涉及了光伏能源的捕获、电力电子转换、控制策略优化和电池充电管理等多个关键环节,所有这些都需要通过专业的模拟和设计工具如Simulink来实现和验证。通过这样的设计,我们可以提高光伏发电系统的效率,同时确保蓄电池的健康和寿命。
2025-05-07 12:48:17 32KB mppt buck simulink
1
自抗扰控制技术:Boost与Buck变换器的Matlab Simulink仿真与C语言代码实现,"自抗扰控制技术在Boost与Buck变换器中的应用与仿真分析",自抗扰控制Matlab Simulink,ADRC仿真与技术文档。 有以下文件 1,Boost自抗扰仿真,与自抗扰基本原理ppt,加最基本的Boost开环仿真与闭环仿真,pi控制参数,与自抗扰对比。 2,Boost自抗扰2阶ADRC,仿真文件。 二阶自抗扰ADRC传递函数推导,与二阶离散化文件,通过自抗扰对一阶传递函数进行控制的文件。 3,Buck变器基本仿真,从开环到闭环一步一步搭建,到pi参数设计与伯德图程序代码,详细的技术文档,控制量匹配情况,扰动公式都是用mathtype敲好的。 4,二阶Buck变器自抗扰控制仿真,与详细技术文档,负载跳变稳定性更好,闭环带宽测试。 5,自抗扰传递函数推倒公式与Matlab 6,从pid到二阶adrc自抗扰控制器,C语言代码一阶adrc,二阶adrc离散化,详细的介绍文档。 参考文献加LLC,等dcdc变器自抗扰仿真。 仿真是自己一步一步搭建的,每一步仿真都有,技术文档和方案公式都用w
2025-05-06 21:19:01 4.16MB
1
内容概要:本文详细介绍了基于STM32F334C8T6的四开关Buck-Boost双向DC-DC电源设计方案。涵盖了硬件选型、电路设计、代码实现以及仿真的全过程。硬件方面,重点讨论了H桥MOS管布局、LC滤波器选择、保护机制设计等;软件方面,则深入探讨了HRTIM定时器配置、模式切换逻辑、PI控制器应用及保护机制实现。文中提供了详细的代码片段和仿真模型,确保设计的高效性和稳定性。 适合人群:从事电源设计的工程师和技术爱好者,特别是对双向DC-DC转换器感兴趣的读者。 使用场景及目标:适用于需要高效率、双向能量流动的电源应用场景,如新能源储能、电池充放电管理等。目标是帮助读者掌握四开关Buck-Boost拓扑的工作原理及其在实际项目中的应用。 其他说明:文章不仅提供了完整的硬件设计报告和代码实现,还包括详细的仿真模型和参数计算,有助于读者全面理解和优化设计。此外,文中还分享了许多调试技巧和实践经验,对于提高设计成功率非常有帮助。
2025-05-05 14:53:16 2.28MB
1
储能蓄电池与Buck-Boost双向DC-DC变换器Simulink仿真模型研究:放电电压电流双闭环控制与充电单电流环策略,储能蓄电池与Buck-Boost双向DC-DC变换器Simulink仿真模型研究:放电电压电流双闭环控制与充电单电流环策略,储能蓄电池+buckboost双向DC-DC变器Simulink仿真模型 放电电压电流双闭环 充电单电流环 ,储能蓄电池; buckboost; 双向DC-DC变换器; Simulink仿真模型; 放电电压电流双闭环; 充电单电流环。,基于储能蓄电池的Buck-Boost双向DC-DC变换器Simulink仿真模型研究
2025-05-05 14:02:21 696KB 数据仓库
1
Buck电路,也被称为降压转换器,是一种常用的直流-直流(DC-DC)转换电路,主要用于将高电压转换为低电压,适用于电源管理和电子设备的供电系统。它的工作原理基于电感器储能和二极管导通的特性,能够有效地提供稳定的输出电压,即使输入电压有所变化。 在Buck电路中,主要元件包括开关晶体管Q1(通常为MOSFET)、电感L、二极管D1和滤波电容C。电路的工作过程可以分为两个阶段:导通阶段和截止阶段。 1. **导通阶段**: - 当开关Q1导通时,输入电源Vin通过Q1向电感L供电,此时电流iL线性增加。电流线性增加是因为电感的特性决定其两端电压与电流变化率成正比(V=Ldi/dt)。电感L存储能量,同时负载R上的电流Io开始流动,输出电压Vo是Vin减去电感L和负载R压降的组合,即Vo = Vin - (iL * RL),这里假设RL为负载电阻。由于电容C在充电状态,其电压is逐渐升高,二极管D1承受反向电压,不导通。 2. **截止阶段**: - 当开关Q1关闭后,电感L中的电流不能突然中断,因此会通过二极管D1继续流向负载R,形成一个反向电流。由于电感的自感效应,其两端电压极性反转,这样D1导通,电流iL保持不变,继续通过负载R,而电容C开始放电,维持输出电流Io的连续性。在这个阶段,输入电流is为零,因此总电流is是脉动的,但由于电容C的滤波作用,输出电流Io变得连续且平滑。 Buck电路的输出电压Vo可以通过调整开关Q1的占空比D(导通时间ton与周期Ts的比例)来控制。增大D可以使Vo上升,反之则下降。理想情况下,当D=1时,Vo=Vin,Buck电路相当于一个直接连接;当D=0时,Vo=0,电路断开。 输出电压Vo和输入电压Vin之间的关系可由以下公式给出: \[ Vo = Vin \cdot D \] 而输出电流Io与输入电流Is之间的关系则是: \[ Io = Is \cdot D \] 通过优化Buck电路的设计,可以实现高效率、低纹波和快速动态响应,使其在各种应用中广泛使用,例如笔记本电脑、手机充电器、LED驱动器和工业电源系统等。同时,Buck电路还可以与其他拓扑结构(如Boost、Buck-Boost等)结合,以满足更复杂的电源转换需求。
2025-04-28 20:46:15 86KB buck电路
1
Buck电路的仿真图,对电路的具体元部件、连线、仿真和图形的分析做了引导性的介绍,
2025-04-28 20:36:02 456KB Buck
1
LM5117是一款高效、宽输入电压范围的同步降压(BUCK)转换器,由德州仪器(Texas Instruments)制造,特别适用于电力电子设计领域。这款芯片在2016年的电子设计竞赛中被广泛使用,证明了其在高压电源转换应用中的可靠性和效率。在"16年电赛用的LM5117宽压同步BUCK电源芯片到货,附测试过的12V/7A降压双层板原理图及PCB文件-LM5117官方演示版.zip"这个压缩包中,包含了一个官方演示版的设计资料,帮助用户理解和应用LM5117。 LM5117的主要特点在于其宽输入电压范围,通常可以支持从4.5V到60V的输入电压,这使得它能够处理从汽车电池到工业电源的各种应用场景。同时,该芯片能提供高达7A的连续输出电流,这意味着它可以为大功率负载供电,例如驱动电机或高亮度LED灯。 LM5117采用了同步降压架构,这是一种先进的电源转换技术,通过两个开关MOSFET来减少传统降压转换器中的二极管损耗,从而提高整体转换效率。这种同步工作模式可以降低温升,提高系统运行的稳定性和可靠性。 在12V/7A降压双层板原理图中,我们可以看到如何将LM5117与外围电路配合使用,以实现从高电压到12V的转换,并且提供7A的稳定电流。这些电路通常包括输入和输出电容、反馈电阻网络、MOSFET以及必要的保护电路,如热关断和电流限制。 PCB文件则提供了实际布局的指导,这对于确保电源模块的热管理和电磁兼容性至关重要。双层板设计有助于优化信号路径,减少干扰,同时有效地分散热量,确保芯片在高功率运行时仍能保持良好的性能。 LM5117还具有多种保护功能,如逐周期电流限制和短路保护,可以防止过载情况对电路造成损害。此外,它的软启动特性可以平滑地控制上电过程,避免电压冲击和电流峰值。 这个压缩包提供的资料对于学习和使用LM5117芯片进行电源设计非常有帮助。通过分析原理图和PCB布局,工程师们可以深入理解如何设计一个高效、稳定的宽压电源系统,满足各种电子设备的需求。对于参与电子设计竞赛的团队或者独立开发者来说,这是一个宝贵的资源。
2025-04-25 22:30:42 561KB 电子设计
1