递归神经网络模型用于纠错 该存储库提供了在描述的各种模型的源代码。 该项目旨在实现和评估神经网络模型,特别是递归神经网络(RNN),双向递归神经网络(BRNN),序列到序列(seq-to-seq)模型以及最终基于注意力的机制。序列到序列模型。 下图说明了预测给定不正确短语的正确形式的编码器-解码器模型。 DyNet库 在当前项目的实施中,我们一直在使用DyNet。 动态神经网络工具包或DyNet是一个神经网络库,适用于具有动态结构的网络。 DyNet支持在神经网络计算中使用的静态和动态声明策略。 在动态声明中,每个网络都是通过使用有向和无环计算图构建的,该图由定义模型的表达式和参数组成。 DyNet在CPU或GPU上有效工作,最近为许多NLP研究论文和项目提供了支持。 您可以找到有关DyNet的更多信息。 资料集 我们的方法与语言无关。 专门针对我们的项目,我们使用对模型进行了训练和评估,
1
轴向注意 在Pytorch中实施。 一种简单而强大的技术,可以有效处理多维数据。 它为我和许多其他研究人员创造了奇迹。 只需在数据中添加一些位置编码,然后将其传递到此方便的类中,即可指定要嵌入的尺寸以及要旋转的轴向尺寸。 所有的排列,整形,都将为您解决。 实际上,这篇论文由于过于简单而被拒绝了。 然而,自那以后,它已成功用于许多应用中,包括, 。 只是去展示。 安装 $ pip install axial_attention 用法 图像 import torch from axial_attention import AxialAttention img = torch . randn ( 1 , 3 , 256 , 256 ) attn = AxialAttention ( dim = 3 , # embedding dimension
1
注意图像字幕注意 该存储库包括“的实现。 要求 Python 3.6 Java 1.8.0 PyTorch 1.0 苹果酒(已经添加为子模块) coco-caption(已经添加为子模块) 张量板 培训AoANet 准备数据 请参阅data/README.md详细信息。 (注释:设置word_count_threshold在scripts/prepro_labels.py至4,以产生大小10369的词汇表。) 您还应该预处理数据集并获取缓存以计算苹果酒得分: $ python scripts/prepro_ngrams.py --input_json data/dataset_coco.json --dict_json data/cocotalk.json --output_pkl data/coco-train --split train 开始训练 $ CUDA_VISIB
1
文字识别工具箱 1.项目介绍 该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的清单如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。 模型 文章标题 发表年份 模型方法划分 神经网络 《基于端到端的可训练神经网络基于图像的序列识别及其在场景文本识别中的应用》 2017年 CNN + BiLSTM + CTC 神经网络 《 OCR门控递归卷积神经网络》 2017年 门控循环抽提层+ BiSTM + CTC 扇子 《关注:在自然图像中实现准确的文本识别》 2017年 聚焦网络+ 1D关注 SAR 《显示,参加和阅读:用于不规则文本识别的简单而强大的基准》 2019年 ResNet + 2D注意 担 《文本识别的去耦注意力网络》 2020年 FCN +卷积对齐模块 卫星 《论具有二维自我注意的任意形状的文本的识别》 2
1
HaloNet-火炬 本文的注意力层的实现,。 该存储库将仅容纳关注层,而不会包含更多内容。 安装 $ pip install halonet-pytorch 用法 import torch from halonet_pytorch import HaloAttention attn = HaloAttention ( dim = 512 , # dimension of feature map block_size = 8 , # neighborhood block size (feature map must be divisible by this) halo_size = 4 , # halo size (block receptive field) dim_head = 64 , # dimension of
1
基于Keras的GAN网络代码,里面有各种GAN网络的代码,请下载
2021-09-28 14:05:32 1.14MB attention keras kerasgan GaN
Keras注意机制 在Keras中为以下层实现了简单的关注机制: 密集(注意2D块) LSTM,GRU(注意3D块) 示例:注意块 致密层 inputs = Input(shape=(input_dims,)) attention_probs = Dense(input_dims, activation='softmax', name='attention_probs')(inputs) attention_mul = merge([inputs, attention_probs], output_shape=input_dims, name='attention_mul', mode='mul') 让我们考虑这个“ Hello World”示例: 32个值的向量v作为模型的输入(简单前馈神经网络)。 v [1] =目标。 目标是二进制(0或1)。 向量v的所有其他值(
2021-09-20 12:23:20 1.14MB Python
1
深度排序 学习使用seq2seq模型对数字进行排序。 运行这段代码 调用pip install -r requirements.txt安装所有依赖项。 产生资料 可以使用所有数据 样品电话 python generate.py \ --name="train" \ --size=10000 \ --max_val=256 \ --min_length=2 \ --max_length=256 \ 训练 可以通过在设置适当的参数,然后将train.run()设置为在调用,最后一次调用python main.py (是的,我很抱歉,对于未配置命令行参数)。 从上面的示例调用生成的数据集中训练了1个纪元,大约花费了10分钟。 评估 在train.txt上训练模型后,使用生成测试集( name="test" ),然后以与上所述相同的方式运行 ,以查看该模型的一些示例评估。 再
1
心电图合成与分类 用于ECG合成的一维GAN和3种模型:具有跳过连接的CNN,具有LSTM的CNN和具有LSTM的CNN,以及用于ECG分类的注意力机制。 动机 心电图被心脏病专家和医学从业者广泛用于监测心脏健康。 与许多其他时间序列数据类似,手动分析ECG信号的主要问题在于难以检测和分类信号中的不同波形和形态。 对于人类而言,此任务既耗时又容易出错。 让我们尝试将机器学习应用于此任务。 数据 可用。 问题的表述: 每个信号应标记为以下类别之一( “正常” , “人工过早” , “室性早搏” , “室和正常融合” , “起搏和正常融合” )。 解决方案 此处提供具有研究和解决方案的代码-和此处 。 楷模 GAN结果 分类结果
2021-08-27 15:46:06 10KB ecg lstm gan attention-mechanism
1
Keras注意机制 Keras的多对一注意力机制。 通过pip安装 pip install attention 导入源代码 from attention import Attention # [...] m = Sequential ([ LSTM ( 128 , input_shape = ( seq_length , 1 ), return_sequences = True ), Attention (), # <--------- here. Dense ( 1 , activation = 'linear' ) ]) 例子 在运行示例之前,请先
1