python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果
2023-04-06 19:49:39 144KB python ARIMA
1
 利用加速度信号测量位移是油田抽油井光杆位移测量的主要方法,而加速度信号的随机噪声和趋势项是影响测量精度的主要因素,本文提出了一种基于学习的实时消噪和剔除趋势项方法。学习时先获取一段时间的加速度信号,再通过时间序列分析技术得出ARIMA模型及其参数,最后基于FFT变换的Rife-Jane频率估计方法求出加速度信号的周期;在线实时消噪和剔除趋势项方法是基于学习阶段所得模型参数,运用卡尔曼滤波技术消除加速度信号随机噪声;按周期两次积分得到光杆位移,用加窗递推最小二乘法在线消除趋势项。通过抽油机半实物仿真平台测试和分析加速度信号,结果表明,该方法有效地去除了加速度信号中的噪声和趋势项,极大地提高了位移的测量精度。
1
# 设置p阶,q阶范围 # product p,q的所有组合 # 设置最好的aic为无穷大 # 对范围内的p,q阶进行模型训练,得到最优模型 全称为自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA),是由博克思(Box)和詹金斯(Jenkins)于70年代初提出一著名时间序列预测方法 ,所以又称为box-jenkins模型、博克思-詹金斯法。其中ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归, p为自回归项; MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数。所谓ARIMA模型,是指将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型。ARIMA模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA)、自回归过程(AR)、自回归移动平均过程(ARMA)以及ARIMA过程。
2023-03-09 23:30:49 1KB python 算法 开发语言
1
判断标准(ADF检验可以得到单位根检验统计量对应的p值,若此值显著大于0.05,则该序列非平稳,否则认为是平稳数据),参考算法:输出信息如下:白噪声处理为了验证
2023-03-09 11:53:22 826KB c# lstm 算法
1
论文研究-我国猪肉消费需求量集成预测——基于ARIMA、VAR和VEC模型的实证.pdf,  猪肉消费需求量预测对稳定猪肉消费市场具有重要意义. 通过建立ARIMA、VAR和VEC模型, 利用Granger因果检验筛选出显著影响因素, 分别预测我国猪肉消费量. 最后, 基于动态集成预测方法对三种模型的预测结果进行综合集成. 通过对2009-2011年我国猪肉消费需求量预测, 实证结果表明样本外集成预测精度更高, 更稳定.
2023-03-09 09:34:57 830KB 论文研究
1
import numpy import numpy as np import pandas as pd import matplotlib.pyplot as plt import statsmodels.api as sm from statsmodels.tsa.arima_model import ARIMA from statsmodels.graphics.tsaplots import plot_acf from statsmodels.graphics.tsaplots import plot_pacf from statsmodels.tsa.seasonal import seasonal_decompose sp500_2013_2018 = pd.read_csv('sp500_data/SP500.csv') print(sp500_2013_2018.head())
2023-02-18 21:44:49 758KB LSTM
1
如今,我国的经济、军事、政治、文化建设得到了迅速的发展,同时,快速的经济发展不可避免地带来了环境问题。近些年来,中国正在尽力解决空气污染问题,虽然已取得初步成效,但与国际上相比,空气质量问题依然严峻。 PM2.5 是当前我国大部分城市面临的首要大气环境问题。本文从2014年1月到2020年12月对廊坊市的PM2.5进行时间序列分析与预测,利用MATLAB软件建立Arima模型,来预测2021年12个月份的PM2.5浓度。
2023-02-08 15:21:14 252KB matlab
1
概要:用季节性ARIMA模型分析和预测我国的进出口总额,有代码和数据及自己写的论文(包含摘要目录等) 论文摘要:进出口总额是反映我国对外贸易的重要指标之一,为探索我国的进出口金额变化情况,选取我国1994-2021年进出口总额的月度历史数据为研究样本,采用时间序列检验方法对其进行了相关分析,建立相应的季节性ARIMA模型,运用所建模型对2023年进出口总额进行预测。研究结果表明:我国月度进出口贸易总额时间序列预测模型表现出明显季度性变化特征,通过模型精度对比,季节性ARIMA模型预测精度较高,结合预测结果可用于有关外贸等方面政策的制定,推动我国经济的进一步发展。
1
ARMA(p,q)的最小二乘估计 非线性最小二乘估计
2023-01-10 15:36:12 682KB ARIMA 时间序列
1
这是一个可以实现ARIMA的预测程序,程序有标注,好理解。
2023-01-10 15:24:02 65KB MATLABarima 预测 ARIMA. arima预测