餐厅推荐系统
进行评级需要考虑多个因素:等待时间,服务,食物质量,清洁度甚至气氛-例如,一家餐馆对食物的态度可能是积极的,而对服务的态度是消极的。 为了解决这个问题,我们的目标是要包括可以在评论文本中找到的情感,并将其转化为可用于进一步改善对用户的业务建议的数据。
该存储库是一个推荐系统,主要关注通过TF-IDF(术语频率-反文档频率)进行的文本评论分析以及使用AutoPhrase进行的目标情感分析,以将情感附加到餐厅的各个方面。 在构建推荐系统时,我们了解到,评论文本与数字统计数据具有相同的重要性,因为它们包含表征他们对评论的感觉的关键短语。 最终目标是设计一个用于部署我们的推荐系统并显示其功能的网站。
请访问我们的website分支,以对预处理的拉斯维加斯/凤凰城数据集进行一些查询!
重要的事情:
该存储库包含两个分支。 main分支包含我们方法的源代码。 website分支包含
1