麻雀算法(SSA)优化极限梯度提升树XGBoost回归预测,SSA-XGBoost回归预测模型,多变量输入模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2023-11-08 16:04:11 54.69MB
1
twitter_sentiment_bert_scikit Twitter美国航空数据集情感分析(情感分析),使用Bert句子编码作为特征,实现了SVM,XGBoost,RandomForest(随机森林)等多个分类算法,从而进行了交叉验证。 数据来自 预安装 我们在Python 3环境中运行该项目,建议您使用Anaconda 3通过以下脚本安装所需的软件包。 当然,您可以使用pip进行安装。 conda create -n tweet_sentiment -c anaconda python=3.7 numpy scikit-learn xgboost pandas tensorflo
1
调试不好联系我,刚注册账号不清楚
2023-05-18 15:36:04 3.45MB xgboost matlab
1
引入加法模型在给定了训练数据和损失函数的条件下,可以通过损失函数最小化来学习加法模型然而对于这个问题是个很复杂的优化问题,而且要训练的参数非常的多,前向分布算法
2023-05-11 19:30:20 2.12MB
1
遗传算法GA优化xgboost模型,python书写,代码用第三方数据集
2023-04-29 13:23:12 2KB python 软件/插件 数据集
1
xgboost代码回归matlab 神经解码: 包含许多用于解码神经活动的方法的python软件包 该软件包包含经典解码方法(维纳滤波器,维纳级联,卡尔曼滤波器,支持向量回归)和现代机器学习方法(XGBoost,密集神经网络,递归神经网络,GRU,LSTM)的混合。 当前设计解码器来预测连续值的输出。 将来,我们将修改功能以允许分类。 该程序包随附一个,用于比较这些方法在多个数据集上的性能。 如果您在研究中使用我们的代码,请引用该手稿,我们将不胜感激。 依存关系 为了运行所有基于神经网络的解码器,您需要安装为了运行XGBoost解码器,您需要安装为了运行维纳滤波器,维纳级联或支持向量回归,您将需要。 入门 我们提供了jupyter笔记本,其中提供了有关如何使用解码器的详细示例。 文件“ Examples_kf_decoder”用于卡尔曼滤波器解码器,文件“ Examples_all_decoders”用于所有其他解码器。 在这里,我们提供一个使用LSTM解码器的基本示例。 对于此示例,我们假设我们已经加载了矩阵: “ neural_data”:大小为“时间段总数” x“神经元数量”的矩
2023-03-31 18:25:09 48.99MB 系统开源
1
'''内置建模方式 1.xgb.train训练方式 2.DMatrix数据形态,不是DataFrame ''' import numpy as np import scipy.sparse import pickle import xgboost as xgb dtrain = xgb.DMatrix('data/agaricus.txt.train') dtest = xgb.DMatrix('data/agaricus.txt.test') #超参数设定 ''' max_depth:用于设置树的最大深度,默认为6,范围为:》1 eta:可以看作为学习率 为了防止过拟合,更新过程中用到的收缩
2023-03-29 10:11:53 36KB gb st xgboost
1
2.Parallel Processing(并行处理):如果大家看过我前面分享的一篇集成学习的文章: 集成学习之bagging、boosting及AdaBoos
2023-03-09 14:53:27 30KB 软件/插件 集成学习 boosting 算法
1
参看CSDN博客和matlab官网分享程序包,进行调试,现共享给大家,麻雀算法bp神经网络改进也完成调试,需要的留言联系
2023-02-20 12:51:05 63KB xgboost matlab ssa-bp
1
安装xgboost失败时所需的插件,具体安装教程请见我发布的博客
2023-02-01 11:35:03 1.94MB xgboost
1