Variational Dirichlet Process Gaussian Mixture Model的Matlab源码
2022-02-24 22:16:40 12KB Variational Dirichlet Process Gaussian Mixture
1
具有高斯混合分量的狄利克雷过程混合模型的变分推理。 基于以下论文: Blei, DM, 和 Jordan, MI (2006)。 Dirichlet 过程混合物的变分推断。 贝叶斯分析,1(1),121-143。
2022-02-23 21:24:33 12KB Python
1
变分自编码器 (VAE) + 迁移学习 (ResNet + VAE) 该存储库在 PyTorch 中实现了 VAE,使用预训练的 ResNet 模型作为其编码器,使用转置卷积网络作为解码器。 数据集 1. MNIST 数据库包含 60,000 张训练图像和 10,000 张测试图像。 每个图像均保存为28x28矩阵。 2. CIFAR10 数据集包含10个类别的60000个32x32彩色图像,每个类别6000个图像。 3. Olivetti 人脸数据集 脸数据集由 40 个不同主题的 10 张 64x64 图像组成。 模型 模型包含一对编码器和解码器。 编码器 将 2D 图像x压缩为较低维度空间中的向量z ,该空间通常称为潜在空间,而解码器 接收潜在空间中的向量,并在与编码器输入相同的空间中输出对象。 训练目标是让encoder和decoder的组合“尽可能接近identity”。
2021-11-19 02:51:19 10.88MB vae resnet transfer-learning variational-autoencoder
1
This comprehensive book presents a rigorous and state-of-the-art treatment of variational inequalities and complementarity problems in finite dimensions. This class of mathematical programming problems provides a powerful framework for the unified analysis and development of efficient solution algorithms for a wide range of equilibrium problems in economics, engineering, finance, and applied sciences. New research material and recent results, not otherwise easily accessible, are presented in a self-contained and consistent manner. The book is published in two volumes, with the first volume concentrating on the basic theory and the second on iterative algorithms. Both volumes contain abundant exercises and feature extensive bibliographies. Written with a wide range of readers in mind, including graduate students and researchers in applied mathematics, optimization, and operations research as well as computational economists and engineers, this book will be an enduring reference on the subject and provide the foundation for its sustained growth
2021-11-15 18:43:05 5.42MB VI CP
1
瑕疵检测代码-matlab 使用可变自动编码器-VAE进行异常检测 在化学材料,衣物和食品材料等的运输检查中,有必要检测正常产品中的缺陷和杂质。 在以下链接中,我共享了仅使用图像进行训练的,使用CAE来检测和定位异常的代码。 在此演示中,您可以学习如何将变式自动编码器(VAE)应用于此任务而不是CAE。 VAE使用潜在空间上的概率分布,并从该分布中采样以生成新​​数据。 要求 MATLAB版本应为R2019b及更高版本 用法 EN_VAE_Anomalydetection.mlx ・显示如何用英语训练VAE模型的示例 JP_VAE_Anomalydetection.mlx ・显示如何用日语训练VAE模型的示例 参考 自动编码变数贝叶斯[2013] Diederik P Kingma,Max Welling 版权所有2019-2020 The MathWorks,Inc.
2021-11-12 13:19:19 16.78MB 系统开源
1
章节 Chapter 1 Introductory Ideas Chapter 2 Lagrangian Interpolates Chapter 3 Hermitian Interpolates Chapter 4 Polynomial Splines and Generalizations Chapter 5 Approximating Functions of Several Variables Chapter 6 Fundamentals for Variational Methods Chapter 7 The Finite Element Method Chapter 8 The Method of Collocation
2021-11-11 15:13:56 2.6MB 样条函数 变分方法
1
对变分自编码的原理结构有详细的介绍,有助于初学者更好的理解
2021-11-09 12:07:33 3.74MB 深度学习 变分自编码
1
变分不等式在网络均衡问题中的相关应用(F.GIANNESSI and A.MAUGERI)
2021-10-18 22:12:39 10.26MB Variational  Inequality Equilibrium
1
Factor graphs, belief propagation and variational__inference.pdf
2021-10-14 16:16:32 5.43MB Factorgraphs b
1
变种火炬自动编码器 Pytorch中针对MNIST数据集的VAE实现 嘿大家! 在这里,我将展示我创建VAE来复制MNIST数据集的项目的所有代码 目录 基本信息 该项目的灵感来自Sovit Ranjan Rath的文章 技术领域 使用以下项目创建项目: Python版本:3.8.5 Pytorch版本:1.8.0 脾气暴躁:1.19.2
2021-10-10 13:32:56 5.4MB JupyterNotebook
1