小型机器学习 [新闻]我们的项目包括:,, , , , 。 TinyML项目 专案 关键字词 高效内存推断,系统算法协同设计 设备上学习,记忆有效的转移学习 关于TinyML 具有丰富传感器的智能边缘设备(例如数十亿部手机和IoT设备)在我们的日常生活中无处不在。结合了人工智能(AI)和这些边缘设备,存在大量的现实世界应用程序,例如智能家居,智能零售,自动驾驶等。但是,最先进的深度学习AI系统通常需要大量资源(例如,大型标签数据集,许多计算资源,许多AI专家)进行训练和推理。这阻碍了这些功能强大的深度学习AI系统在边缘设备上的应用。 旨在通过需要更少的计算,更少的工程师和更少的数据来提高深度学习AI系统的效率,以促进边缘AI和AIoT的巨大市场。 演示版 相关项目 (NeurIPS'20,聚焦) (NeurIPS'20) 全力以赴(ICLR'20) (ICLR'19) (I
2021-03-18 17:09:13 4.72MB Python
1
使用适用于STM32F407 uC的不同框架的TinyML 警告: 由于库包含在.gitignore中,因此必须为每个项目都生成CubeMX代码。 对于TFLite项目,必须将自动生成的main更改为.cpp,并且必须将其与main.c.中的最新更改合并。 开发IDE:Keil uVision v6 多维数据集MXAI / 003MagicWand 在CubeMXAI \ 003MagicWand \ Middlewares \ Third_Party \ MachineLearning \ edgeimpulse \ model-parameters \ model_metadata.h中修改以下参数:#define EI_CLASSIFIER_RAW_SAMPLE_COUNT 200 #define EI_CLASSIFIER_INTERVAL_MS 10 #define EI_
2021-03-05 18:07:50 13.25MB c cpp tensorflow stm32
1
TinyML Machine Learning with TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers by Pete Warden, Daniel Situnayake Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. * Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures * Work with Arduino and ultra-low-power microcontrollers
2020-12-08 16:04:16 23.43MB TinyML Arduino machinelearning Tensorflow
1