资源里面包含Fritzing0.9.10的安装包文件,还有OLED屏幕、Arduino、ESP32、raspberry Pi4B、DHT11、DHT22、MQ-3、MQ-4(MQ-2可以从MQ-4里修改)等等的元器件库,免费资源分享给大家,欢迎各位来下载和收藏。如有缺失的元器件可私信或者评论区留言联系我,我可帮大家找找。 Fritzing是一项电子设计自动化软件,使任何人都可以将电子产品作为创意材料使用。它支持设计师,艺术家,研究人员和爱好者参加从物理原型到进一步实际的产品。还支持用户记录其Arduino和其他电子为基础的原型,与他人分享,在教室里教电子,并建立一家生产印刷电路板的布局。
2024-09-10 10:09:01 378B
1
SPI(Serial Peripheral Interface)是一种高速、全双工的同步串行通信接口,广泛应用于嵌入式系统中的设备间通信。SPI接口通常包含四条信号线:SCLK(Serial Clock)、MOSI(Master Out, Slave In)、MISO(Master In, Slave Out)和CS(Chip Select)。SCLK是由主设备产生的时钟信号,用于同步数据传输;MOSI和MISO分别用于主设备向从设备发送数据和从设备向主设备发送数据;CS是片选信号,由主设备控制,用于选择与之通信的从设备。 SPI接口的工作模式主要为主从模式,一个主设备可以连接多个从设备,数据传输由主设备启动。SPI总线结构是一种环形结构,使得多个从设备可以在同一总线上共存。CS信号的有效性(通常为高电平或低电平,取决于具体的系统设计)决定了哪个从设备被选中进行通信,使得在同一时刻只有一个从设备能与主设备交互。 在基于FPGA的SPI接口设计中,通常使用硬件描述语言(如Verilog HDL)实现SPI控制器,通过有限状态机(Finite State Machine, FSM)来管理SPI接口的各个操作阶段。FSM能够有效地控制数据的发送和接收,以及片选信号的切换,确保数据传输的准确性和效率。 寄存器寻址是SPI接口的一个扩展功能,它允许主设备通过地址字段来访问从设备内部的特定寄存器,从而读取或写入数据。这种功能在需要与具有复杂内存映射的设备通信时尤其有用,例如在配置Flash存储器、控制AD/DA转换器或者与网络控制器交互等场合。 在设计带有寄存器寻址的SPI接口时,需要考虑以下关键点: 1. **状态机设计**:状态机需要管理SPI接口的所有操作,包括发送片选信号、设置时钟、发送地址和数据、接收数据等。每个状态对应于SPI通信过程中的一个步骤,例如开始传输、发送地址、等待响应、发送数据等。 2. **寄存器映射**:定义从设备的寄存器布局,包括地址空间的分配和每个寄存器的功能。 3. **数据包格式**:设计数据包格式以包含地址和数据字段,确保正确寻址到目标寄存器。 4. **错误处理**:考虑到可能出现的通信错误,如地址错误、超时、数据校验失败等,设计相应的错误检测和处理机制。 5. **时序控制**:SPI通信依赖于精确的时序,因此需要确保SCLK、MOSI和MISO信号的时序正确,并与从设备的时序兼容。 6. **仿真验证**:使用仿真工具(如Modelsim SE 6.5)进行设计验证,检查接口是否按照预期工作,确保在实际应用中的可靠性。 7. **FPGA实现**:将验证通过的Verilog代码下载到FPGA开发板上进行硬件验证,确保设计在实际硬件环境中的功能正确性。 通过上述设计流程,我们可以构建一个高效、可靠的基于FPGA的带寄存器寻址SPI接口,满足物联网技术中对高速、灵活通信的需求。这样的接口设计不仅能够提高数据传输速率,还能通过寄存器寻址功能增强设备的控制能力,适应各种复杂的嵌入式系统应用场景。
2024-09-05 17:03:13 716KB FPGA 寄存器寻址 SPI 接口设计
1
在本文中,我们将深入探讨如何使用STM32微控制器通过硬件IIC接口驱动0.96英寸4针的OLED显示器。STM32是STMicroelectronics公司推出的一系列基于ARM Cortex-M内核的微控制器,广泛应用在嵌入式系统设计中。HAL库,即Hardware Abstraction Layer(硬件抽象层),为STM32提供了统一的API接口,使得开发者可以方便地跨不同系列的STM32芯片进行编程。 0.96英寸的OLED显示器是一种常见的显示设备,它采用有机发光二极管作为显示像素,具有高对比度、广视角和快速响应速度等优点。4针接口通常包括电源(VCC)、接地(GND)、串行数据线(SDA)和时钟线(SCL),这与I2C(Inter-Integrated Circuit)总线协议相匹配,I2C是一种多主控、双向二线制的通信协议,常用于低速、短距离的嵌入式系统内部通信。 要使用STM32的硬件IIC驱动OLED显示器,首先你需要确保你的STM32开发板上的IIC接口已正确连接到OLED显示器的SDA和SCL引脚。然后,你需要配置STM32的HAL库来支持IIC通信。这通常涉及以下步骤: 1. **初始化HAL库**:在项目开始时,调用`HAL_Init()`函数初始化系统时钟和HAL库。 2. **配置I2C接口**:使用`HAL_I2C_Init()`函数初始化I2C外设。你需要指定I2C的时钟速度(例如,400kHz对于标准速I2C,1MHz对于高速模式),并设置相应的GPIO引脚为复用开漏模式。 3. **配置OLED控制器**:OLED显示器通常由一个内置控制器(如SSD1306)管理。在开始通信前,你需要发送一系列初始化命令来设置显示参数,如分辨率、偏压比和扫描方向等。这些命令可以通过`HAL_I2C_Master_Transmit()`函数发送到I2C总线。 4. **发送显示数据**:初始化后,你可以使用HAL库的I2C函数将显示数据写入OLED控制器。数据通常是16位RGB565格式,每像素16位,分为红、绿、蓝三个通道。数据传输通常以字节为单位,可能需要分两次发送每个像素的高8位和低8位。 5. **显示更新**:在发送完所有数据后,向OLED控制器发送命令更新显示内容。这通常是一个简单的命令,如SSD1306的0xAE(显示关闭)和0xAF(显示开启)。 6. **错误处理**:在每个I2C操作后,检查返回的`HAL_StatusTypeDef`状态,确保没有发生错误。例如,超时或数据校验错误可能需要重新发送命令或数据。 7. **电源管理**:为了节省电源,你还可以设置OLED在不使用时进入低功耗模式,或者在需要时唤醒。 使用STM32的硬件IIC驱动0.96英寸OLED显示器涉及到对HAL库的深入理解和对I2C通信协议的熟悉。通过合理配置和编程,可以实现高效的显示效果。在实际应用中,可能还需要考虑其他因素,如电源管理、抗干扰措施以及适应不同类型的OLED显示屏。记得在编写代码时遵循良好的编程实践,确保代码的可读性和可维护性。
2024-09-02 15:31:14 5.14MB stm32
1
STM32 SPI(Serial Peripheral Interface)是一种常见的串行通信接口,广泛应用于嵌入式系统中,用于连接并控制各种外设,如传感器、LCD显示屏、闪存等。在这个例程中,我们将深入探讨STM32如何配置和使用SPI进行通信,并提供实际验证过的代码示例。 1. **SPI工作原理**: SPI接口采用主-从架构,由一个主机(Master)驱动一个或多个从机(Slave)。通信时,主机发出时钟信号,从机根据时钟信号发送和接收数据。SPI有四种工作模式(CPOL和CPHA的组合),主要区别在于数据是在时钟脉冲的上升沿还是下降沿被采样,以及在哪个时钟周期数据有效。 2. **STM32 SPI初始化**: 在STM32中,SPI的初始化涉及以下步骤: - 选择SPI时钟源:通常使用APB1或APB2时钟,根据具体需求调整预分频器。 - 配置GPIO:SPI引脚需设置为推挽输出或开漏输出,并启用上拉/下拉电阻,根据应用选择合适的速度。 - 选择SPI模式:设置CPOL和CPHA参数。 - 设置波特率:通过配置SPI的预分频器和分频因子。 - 使能SPI总线和中断,如果需要的话。 3. **SPI传输数据**: STM32提供了多种方式发送和接收SPI数据,如SPI_Transmit、SPI_Receive、SPI_SendReceive等函数。在传输过程中,主机可以同时读取从机返回的数据,实现全双工通信。 4. **SPI中断处理**: 为了提高实时性,可以使用中断处理SPI通信完成事件。当传输结束时,SPI状态寄存器中的相关标志位会被置位,通过检测这些标志可以触发中断服务程序。 5. **SPI实例代码**: 以下是一个简单的STM32 SPI主设备发送数据到从设备的示例: ```c void SPI_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; SPI_InitTypeDef SPI_InitStructure; // 配置GPIO RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOA, &GPIO_InitStructure); // 配置SPI RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2, ENABLE); SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex; SPI_InitStructure.SPI_Mode = SPI_Mode_Master; SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b; SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low; SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge; SPI_InitStructure.SPI_NSS = SPI_NSS_Soft; SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_4; SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB; SPI_InitStructure.SPI_CRCPolynomial = 7; SPI_Init(SPI2, &SPI_InitStructure); SPI_Cmd(SPI2, ENABLE); } void SPI_Transmit(uint8_t data) { while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_TXE) == RESET); SPI_I2S_SendData(SPI2, data); while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_BSY) == SET); } ``` 这段代码首先初始化GPIO和SPI2,然后定义了一个SPI_Transmit函数用于发送单个字节数据。注意在发送数据前要确保TXE(传输空)标志为低,表示SPI传输缓冲区已准备好接收新数据;在发送完成后,等待BSY(忙)标志变为低,表示传输已完成。 6. **调试与测试**: 在实际应用中,可能需要使用示波器检查SPI时钟和数据线上的信号,或者连接一个兼容的SPI从设备进行通信测试。确保时序正确,数据无误。 7. **注意事项**: - SPI通信可能会与其他外设冲突,确保正确设置NSS(片选)信号,避免不必要的选通。 - 检查电源和地线布局,确保信号质量。 - 在多设备环境中,正确配置SPI设备的地址或选择线。 这个STM32 SPI例程经过了实际测试,证明其功能是可靠的。你可以将这段代码作为基础,根据自己的硬件配置和应用需求进行修改和扩展,以满足不同的项目需求。
2024-09-02 13:42:46 2KB stm32 spi
1
资源介绍:STM32与0.96寸四针脚IIC OLED例程 1. 简介 STM32是一个广泛应用于嵌入式系统中的微控制器系列,其高性能和丰富的外设使其成为开发各类项目的理想选择。0.96寸OLED显示屏是一种常见的小尺寸显示模块,通常使用I2C接口与主控芯片进行通信。本文将介绍如何在STM32微控制器上驱动0.96寸四针脚IIC OLED显示屏,包括必要的硬件连接、软件库以及示例代码。 2. 硬件需求 STM32微控制器开发板(如STM32F103C8T6,俗称“蓝色小板”) 0.96寸I2C接口OLED显示屏 杜邦线若干 3. 硬件连接 OLED显示屏通常有四个引脚: VCC: 电源正极(一般连接3.3V或5V) GND: 电源负极 SDA: I2C数据线 SCL: I2C时钟线 将OLED显示屏连接到STM32开发板: VCC接STM32的3.3V GND接STM32的GND SDA接STM32的I2C数据线(如PB7) SCL接STM32的I2C时钟线(如PB6) 4. 软件需求 STM32CubeMX:用于生成STM32的初始化代码 Keil MDK或其他ARM开发环境:
2024-08-28 21:48:22 9KB stm32 OLED
1
TouchGFX开发(3)----使用TouchGFX配置IIC接口OLED CSDN文字教程:https://blog.csdn.net/qq_24312945/article/details/130689223 B站教学视频:https://www.bilibili.com/video/BV17m4y1t7RT/ 本篇文章的主题是“TouchGFX开发(3)----使用TouchGFX配置IIC接口OLED”,我们将专注于如何利用TouchGFX在分辨率为128*64,内置SSD1306的OLED屏幕上进行界面开发。我们将详细讲解如何配置IIC接口,这样可以让我们的OLED屏幕与微控制器顺利通讯。 首先,我们会讨论关于OLED技术和SSD1306驱动器的基础知识,帮助读者更好地理解其工作原理。然后,我们将介绍如何使用TouchGFX Designer工具,构建和设计我们的用户界面。 我们将提供步骤,讲解如何在TouchGFX环境中配置I2C,并将其连接到我们的OLED屏幕。 最后,我们将展示如何将设计的界面成功地显示在我们的OLED屏幕上,以及如何进行简单的交互。
2024-08-27 08:59:13 68.58MB 课程资源 OLED touchgfx 12864
1
SPI(Serial Peripheral Interface)是一种广泛应用于微控制器和数字逻辑设备之间的串行通信协议,它以其简单、高效的特点在嵌入式系统中占据了重要的地位。在FPGA(Field-Programmable Gate Array)设计中,使用Verilog语言实现SPI接口驱动是常见的任务。以下是关于FPGA-Verilog语言-SPI接口驱动代码的相关知识点: 1. **SPI协议概述**: - SPI协议是一种全双工、同步串行通信协议,通常由主设备(Master)发起传输,从设备(Slave)响应。 - SPI有两种工作模式:三线制(MISO、SCLK、CS)和四线制(MISO、MOSI、SCLK、CS),其中MISO(Master In, Slave Out)和MOSI(Master Out, Slave In)用于数据交换,SCLK(Serial Clock)为时钟信号,CS(Chip Select)是片选信号,用于选择与哪个从设备通信。 2. **SPI模式(Mode)**: - SPI有四种工作模式(Mode 0, Mode 1, Mode 2, Mode 3),区别在于数据是在时钟上升沿还是下降沿被采样,以及数据是在时钟上升沿还是下降沿被发送。本例中提到了Mode 0,其特点是数据在时钟的上升沿被采样,数据在时钟的下降沿被发送。 3. **Verilog语言**: - Verilog是一种硬件描述语言,用于设计和描述FPGA和ASIC(Application-Specific Integrated Circuit)的逻辑功能。 - 在Verilog中实现SPI接口,需要定义相关的信号,如SCLK、MISO、MOSI和CS,并编写时序逻辑来控制这些信号的状态,以实现SPI协议的数据传输。 4. **FPGA SPI驱动代码结构**: - 主机驱动(Master):负责产生时钟SCLK、片选CS信号,并控制数据线MOSI的电平,以发送数据到从设备。 - 从机驱动(Slave):根据接收到的SCLK和CS信号,读取MISO上的数据,并在MOSI上响应数据给主机。 5. **仿真代码**: - 为了验证SPI接口驱动代码的功能正确性,通常会编写仿真代码。这可以使用像ModelSim或Vivado等工具进行,通过输入激励信号,观察预期的输出,确保SPI协议的正确执行。 6. **spi_comm文件**: - 这个文件很可能是实现SPI通信的Verilog源代码文件,可能包含了主机和从机的模块定义,以及必要的状态机和时序逻辑。具体代码细节可能包括了对SPI信号的处理,如时钟分频、数据打包和解包、片选信号的管理等。 "FPGA-Verilog语言-SPI接口驱动代码"涉及了FPGA设计中的SPI通信协议、Verilog编程以及SPI接口的主机和从机驱动实现。在实际应用中,这样的代码可以用于控制各种外设,如传感器、存储器等,实现高速、低功耗的数据传输。通过理解并掌握这些知识点,开发者可以设计出高效的SPI接口解决方案。
2024-08-18 16:22:43 4KB fpga开发 Verilog SPI
1
已成功读取2块不同厂家屏幕的ID
2024-08-07 11:20:27 2KB st7789 SPI
1
STM32是一款基于ARM Cortex-M内核的微控制器,由意法半导体公司(STMicroelectronics)生产,广泛应用于嵌入式系统设计。本篇主要关注STM32在SPI(Serial Peripheral Interface)通信上的实践,通过两个实验:硬件SPI读写W25Q64和软件SPI读写W25Q64,来深入理解SPI接口的工作原理和编程方法。 1. **SPI基本概念** SPI是一种同步串行通信协议,用于连接微控制器和其他外围设备。它通常包含四个信号线:SCLK(时钟)、MISO(主设备输入,从设备输出)、MOSI(主设备输出,从设备输入)和NSS/CS(片选信号),支持全双工通信。STM32中的SPI外设可以工作在主模式或从模式,提供多种时钟极性和相位配置,以适应不同设备的需求。 2. **硬件SPI与软件SPI的区别** 硬件SPI利用了STM32内部的SPI外设,由硬件自动处理时钟生成、数据传输等细节,减轻CPU负担,提高通信效率。软件SPI则完全由CPU通过GPIO模拟SPI协议,灵活性更高但速度相对较慢。 3. **11-1 软件SPI读写W25Q64** W25Q64是一款SPI接口的闪存芯片,用于存储大量数据。在软件SPI实验中,需要通过STM32的GPIO模拟SPI信号,逐位发送命令和地址,并接收返回数据。关键步骤包括初始化GPIO、设置SPI时序、发送命令、读取数据等。此实验旨在熟悉SPI协议的软件实现,理解每个信号线的作用。 4. **11-2 硬件SPI读写W25Q64** 使用硬件SPI时,需要配置STM32的SPI外设,包括选择SPI接口、设置时钟源、配置时钟极性和相位、配置NSS信号模式等。然后,同样发送命令和地址,但数据传输由硬件自动完成。硬件SPI实验强调的是如何高效利用STM32的SPI外设,提高系统的实时性。 5. **W25Q64操作指令** 在SPI通信中,需要掌握W25Q64的读写指令,如读状态寄存器、读数据、写数据、擦除扇区等。理解这些指令的格式和作用是成功进行SPI通信的基础。 6. **实验步骤与代码分析** 实验步骤通常包括初始化STM32、配置SPI接口、选择正确的片选信号、发送读写指令、处理响应数据。代码分析可以帮助理解STM32如何通过HAL库或LL库(Low Layer库)来设置和控制SPI外设,以及如何与W25Q64交互。 7. **调试与问题解决** 在实际操作中可能会遇到如通信错误、数据不一致等问题,这需要熟练使用调试工具,如STM32CubeIDE的断点、单步执行、查看寄存器状态等功能,来定位并解决问题。 8. **总结** 通过这两个实验,不仅能掌握STM32的SPI通信,还能深入了解SPI协议、微控制器与外设之间的交互方式,以及如何通过代码实现这些功能。这对理解和应用其他SPI设备,如LCD、传感器等,具有重要的实践意义。
2024-08-06 15:57:31 633KB stm32
1
在本项目中,我们将深入探讨如何使用STM32微控制器结合FC-28土壤湿度传感器以及OLED显示屏来实现一个详细的监测系统。STM32是一款广泛应用于嵌入式领域的32位微控制器,以其高性能、低功耗和丰富的外设接口而备受青睐。FC-28土壤湿度传感器则用于测量土壤的水分含量,这对于农业自动化、植物养护或环境监控等领域具有重要意义。OLED显示屏则能直观地展示传感器采集的数据,便于实时监控。 我们要了解STM32的基础知识。STM32家族是基于ARM Cortex-M内核的,具有多种型号,如STM32F103、STM32F4等,分别适用于不同的性能需求。在本项目中,我们可能使用的是STM32F1系列,因为它具有足够的处理能力和资源,且性价比高。 接着,FC-28土壤湿度传感器的工作原理是利用电容式原理来检测土壤湿度。传感器由两片电极组成,当土壤中的水分含量增加时,电极间的介电常数也会增加,导致电容值改变,通过测量这个变化,我们可以推算出土壤的湿度。 为了读取FC-28传感器的数据,我们需要将其连接到STM32的ADC(模拟数字转换器)接口。STM32的ADC功能强大,可以将模拟信号转换为数字信号,供微控制器处理。在编程时,我们需要配置ADC的相关寄存器,设置采样时间、分辨率等参数,并启动转换,然后读取转换结果。 然后,我们需要编写驱动程序来处理OLED显示屏。OLED(有机发光二极管)屏幕具有自发光、高对比度和快速响应等优点,常用于小型嵌入式设备。OLED通常通过I2C或SPI接口与MCU通信。在STM32上,我们需要初始化这些接口,并发送指令控制屏幕显示内容。例如,设置显示模式、清屏、写入像素点或字符串等。 在软件设计方面,项目可能使用C或C++语言,遵循面向对象的原则进行模块化设计。代码可能包含以下几个部分:初始化函数,用于配置GPIO、ADC和I2C/SPI接口;传感器数据采集函数,用于周期性地读取土壤湿度;数据显示函数,负责更新OLED屏幕的内容;以及主循环,协调各个模块的运行。 在实际应用中,我们可能还需要考虑电源管理、抗干扰措施、数据记录和远程传输等功能。例如,通过加入RTC(实时时钟)模块记录测量时间,或者通过无线模块如蓝牙或LoRa将数据发送到手机或云端服务器,以便进一步分析和远程监控。 这个项目涵盖了STM32微控制器的使用、传感器数据采集、模拟信号转换、OLED显示技术以及嵌入式系统设计等多个方面的知识。通过实践这个项目,不仅可以提升对STM32和嵌入式系统的理解,还能掌握实际应用中的硬件接口设计和软件编程技巧。
2024-08-02 22:30:42 326KB stm32
1