提出一种基于统一计算设备架构(CUDA)加速的尺度不变特征变换(SIFT)快速计算方法,用以解决SIFT特征提取计算过程耗时过长的问题。该方法充分利用图像处理单元(GPU)在并行计算、浮点计算、内存管理等方面的优势,合理分配主机端和设备端的资源及其在SIFT特征计算中所承担的角色。实验表明,与CPU架构下的SIFT特征提取算法相比,本文算法可以大幅度加快SIFT特征提取的计算速度,其加速比随着SIFT特征点数目的增加而增加,在本文实验中最大加速比可达19.54。
2021-11-27 16:29:47
775KB
自然科学
论文
1