M3C模块化多电平矩阵变换器仿真研究:双调制策略下的输入输出性能及风力发电配网运行优化方案,模块化多电平矩阵变换器(M3C)仿真:采用近期电平逼近与载波移相调制技术的海上风电与风力发电的配网运行方案,模块化多电平矩阵变器(M3C)仿真两个,包含最近电平逼近调制和载波移相调制, 输入50 3Hz 2021a版本 输出50Hz 适用于海上风电 风力发电 配网运行方案。 ,M3C仿真;最近电平逼近调制;载波移相调制;输入50 3Hz 2021a版本;输出50Hz;海上风电;风力发电;配网运行方案,M3C仿真:多调制方式风力发电配网运行方案
2025-07-25 09:34:51 5.42MB
1
在本文中,我们将深入探讨如何在Visual C++ 6(简称VC6)环境中实现傅立叶变换,并通过实例代码和图像示例来展示其效果。傅立叶变换是一种数学工具,广泛应用于信号处理、图像分析和许多其他领域,它能够将一个函数或信号从其原始域转换到频域,从而揭示其频率成分。 傅立叶变换的基本概念: 傅立叶变换是一种将时域信号转化为频域表示的方法。对于离散时间信号,离散傅立叶变换(DFT)被广泛应用。DFT计算的是信号在不同频率上的幅度和相位。在图像处理中,DFT可以帮助我们理解图像的频率特性,例如去除噪声、图像缩放或进行滤波操作。 在VC6中实现傅立叶变换: 在VC6环境下,我们可以使用标准模板库(STL)和一些第三方库如FFTW(Fastest Fourier Transform in the West)或者OpenCV来进行傅立叶变换。FFTW是一个高效的C库,提供了多种傅立叶变换算法。而OpenCV是专为计算机视觉设计的库,其中包含了对DFT的支持。 1. 使用FFTW库: 你需要下载并包含FFTW库到你的VC6项目中。然后,可以创建一个浮点数数组来存储图像的像素值,使用FFTW的`fftw_plan_dft_2d`函数来创建一个变换计划,接着调用`fftw_execute`执行实际的傅立叶变换。别忘了在完成后使用`fftw_destroy_plan`释放计划。 2. 使用OpenCV库: OpenCV提供了`cv::dft`函数,可以直接对Mat类型的图像进行傅立叶变换。将图像数据转换为复数类型,然后调用`dft`函数,最后可能需要进行位移和平移,以便正确显示频谱。 图像示例与效果: 提供的图像示例通常会展示原始图像、其傅立叶变换后的频谱以及应用了某种滤波器后的结果。在频谱中,低频部分位于中心,高频部分位于边缘。颜色编码通常用于表示幅度,如红色代表高幅度,蓝色代表低幅度。通过观察频谱,我们可以看到图像的主要频率成分及其分布。 总结: 通过在VC6中实现傅立叶变换,我们可以对数字图像进行深入分析,理解和操纵其频域特性。无论是使用FFTW还是OpenCV,都可以方便地实现这一过程,并且通过图像示例直观地展示变换结果。傅立叶变换在信号处理和图像分析中的重要性不言而喻,它是现代科技领域不可或缺的工具。
2025-07-24 20:53:56 135KB 傅立叶变换
1
多技术融合图像加密项目,结合了传统密码学、混沌理论和基于变换域的图像加密技术。
2025-07-22 12:58:46 3.04MB python 图像加密
1
中的“matlab图像分割肿瘤代码-curvelets”涉及到的是使用MATLAB进行图像处理,特别是肿瘤图像的分割技术,这里采用的是Curvelet变换。Curvelet变换是一种数学工具,它结合了小波分析和曲线几何的优点,适用于处理具有边缘和曲线结构的图像。 在图像分割领域,尤其是医疗成像,如肿瘤检测,准确地识别和量化肿瘤是至关重要的。Curvelets变换能够有效捕捉图像中的曲线特征,这对于识别肿瘤的边缘特别有用,因为肿瘤通常在图像中表现为不规则的边缘或轮廓。 简单明了地指出这是MATLAB实现的图像分割代码,意味着这个代码库可能包含了一系列用于处理和分析肿瘤图像的MATLAB函数或脚本。这些代码可能包括预处理步骤、Curvelet变换的实现、图像分割算法以及后处理步骤,用于从原始图像中提取肿瘤区域。 "系统开源"表明这是一个开放源码的项目,意味着任何人都可以访问、学习、使用和改进这段代码。开源软件对于促进技术发展和知识共享有着重大意义,开发者可以通过查看源代码,理解算法的工作原理,甚至可以针对特定需求进行定制。 在【压缩包子文件的文件名称列表】中,“curvelets-master”可能是项目仓库的主目录,通常包含项目的基本结构,如源代码文件、README文档、示例数据、测试文件等。用户可以解压此文件,通过MATLAB环境运行其中的代码,来体验和学习基于Curvelet变换的肿瘤图像分割过程。 这个压缩包提供的是一套基于MATLAB的开源图像分割工具,主要应用了Curvelet变换来处理和分析肿瘤图像。用户不仅可以利用这个工具进行实际的肿瘤分割任务,还可以深入研究 Curvelet 变换的原理及其在图像分割中的应用,对图像处理和医学影像分析有浓厚兴趣的人会从中受益匪浅。同时,开源的特性使得这个项目具有高度的可扩展性和适应性,可以根据不同的需求进行调整和优化。
2025-07-22 10:50:08 82.75MB 系统开源
1
在图像处理领域,压缩技术是必不可少的一环,尤其是在存储和传输大量图像数据时。JPEG(Joint Photographic Experts Group)是一种广泛使用的有损压缩标准,它结合了多种算法,包括离散余弦变换(DCT)、量化和哈弗曼编码等,以有效地减少图像的存储空间。以下将详细阐述这些知识点及其在STM32F4微控制器上的实现。 1. **离散余弦变换(DCT)**:DCT是一种数学方法,它可以将图像从像素空间转换到频率空间。在图像中,相邻像素通常具有相似的颜色和亮度,这意味着在频率域中,低频成分(大范围变化)比高频成分(小范围变化)更重要。通过DCT,图像的能量主要集中在低频部分,这为后续的压缩提供了可能。 2. **量化**:在DCT之后,得到的是浮点数的频谱。由于实际应用中需要整数表示,所以需要量化过程。量化是将DCT系数按照预定义的量化表映射为整数,这个过程会导致信息损失,是JPEG有损压缩的主要原因。量化表的设计是关键,它平衡了压缩比和图像质量。 3. **哈弗曼编码**:哈弗曼编码是一种变长编码技术,用于进一步压缩已量化的DCT系数。在JPEG中,频繁出现的系数(通常是低频系数)会被赋予较短的编码,而不常出现的系数则分配较长的编码。这样可以进一步减小存储需求,因为更常见的数据占用的存储空间更少。 4. **STM32F4实现**:STM32F4是一款高性能的ARM Cortex-M4微控制器,其强大的浮点运算能力使得在硬件上执行DCT变得可行。开发者可以编写C或汇编代码,利用STM32F4的内置数学库来实现DCT和量化。哈弗曼编码则可以通过构建哈弗曼树并进行编码操作来完成。STM32F4的高速内存和I/O接口也支持快速读写图像数据,从而实现图像压缩和解压缩。 5. **移植性**:由于JPEG压缩算法的标准化,以及STM32F4的广泛应用,基于STM32F4的图像压缩程序可以方便地移植到其他平台,只需确保目标系统有足够的计算能力和内存,并且兼容相应的接口和协议。 在“复件 5.24”这个压缩包中,可能包含了实现这些功能的源代码、头文件、量化表、哈弗曼编码表以及可能的测试图像。通过分析和理解这些文件,开发者可以学习如何在嵌入式系统上实现高效的图像压缩,从而应用于各种实际项目,如监控系统、无人机影像传输或物联网设备。
2025-07-19 22:17:15 3.67MB JPEG 图像压缩
1
半桥与全桥LLC仿真中的谐振变换器四种控制方式探索:频率控制PFM、PWM、移相控制PSM及混合控制PFM+PSM在Plecs、Matlab Simulink环境下的应用。,半桥与全桥LLC仿真中的谐振变换器四种基本控制方式:频率控制PFM、PWM控制、移相控制PSM与混合控制PFM+PSM在plecs、matlab及simulink环境下的应用。,半桥 全桥LLC仿真,谐振变器的四种基本控制方式。 主要有 频率控制PFM PWM控制 移相控制PSM 混合控制PFM+PSM 运行环境有plecs matlab simulink ,半桥; 全桥LLC仿真; 谐振变换器; 控制方式:频率控制PFM; PWM控制; 移相控制PSM; 混合控制PFM+PSM; 运行环境:plecs; matlab; simulink。,半桥全桥LLC仿真研究:四种谐振变换器控制方式探索运行环境:Plecs与Matlab Simulink的比较与运用
2025-07-16 16:46:13 3.35MB istio
1
内容概要:本文详细介绍了DC-DC变换中Boost与Buck电路的双闭环控制策略,重点在于通过STM32实现精确的电压调节。文中不仅讲解了电流环和电压环的具体实现方法,如电流环的PID控制算法和电压环的滑动平均滤波,还提供了实用的调试技巧和硬件选型建议。作者强调了电流环的快速响应和电压环的整体稳定性,并分享了一些避免常见问题的经验,如防止MOS管过热和解决振铃现象的方法。 适合人群:从事电源设计的技术人员,尤其是有一定嵌入式系统基础并希望深入了解DC-DC变换电路控制机制的研发人员。 使用场景及目标:适用于需要高精度电压调节的应用场合,如工业自动化设备、通信基站电源管理等。目标是帮助读者掌握双闭环控制的实际应用,提高系统的稳定性和效率。 其他说明:文章结合实际案例和技术细节,为读者提供了一个从理论到实践的完整学习路径。特别提醒了硬件选择的重要性以及软件调试的关键点。
2025-07-15 11:47:32 317KB
1
采用UC3843 电流型PWM 控制芯片设计了一种连续电流模式(Continuous Current Mode,简称CCM)的Boost变换器。建立了Boost 变换器CCM 电路的数学模型,推导了其工作条件,并利用Multisim 仿真软件进行电路仿真,验证了设计电路的可行性。试验结果显示,该电路能够很好地满足输出性能的设计要求 在分析基于UC3843的CCM模式Boost变换器设计的知识点之前,首先需要解释文章中提到的一些关键术语和概念。UC3843是一种电流型脉宽调制(PWM)控制芯片,常用于开关电源的控制。Boost变换器是一种升压转换器,它能够将较低的直流电压提升为较高的直流电压。而CCM(Continuous Current Mode,连续电流模式)是一种开关电源的工作模式,在这种模式下,变换器的电感电流在整个周期内都不会降至零。 1. Boost变换器的工作原理与数学模型: - 文章中提到了对Boost变换器CCM电路建立数学模型,并推导了工作条件。数学模型的建立通常涉及电路的静态和动态分析,包括电感器(L)和电容器(C)等关键元件的工作状态描述。 - 电感器(L)在工作中的状态变化是根据输入电压(Ui)和输出电压(Uo)之间的关系来确定的。当开关(S)闭合时,电感器开始充电,电流线性增加(di/dt = Ui/L);当开关断开时,电感器放电,电流线性减少(di/dt = -(Ui+Uo)/L)。这一过程涉及到电感器储能和释放能量的原理。 2. PWM控制与UC3843芯片: - PWM控制技术主要用于调节输出电压,通过改变开关管的导通和截止时间比例(占空比D)来控制输出电压。PWM控制可以有效减少输出电压纹波,提升电源效率。 - UC3843芯片是一款性能稳定的电流模式PWM控制器,它能提供精确的电流控制,适用于开关电源的设计。通过控制开关管的开关来调节流过电感的电流,进而控制输出电压。 3. Multisim仿真软件的应用: - Multisim是电子仿真软件,它能对设计的电子电路进行仿真测试,以验证电路设计的正确性。在本设计中,通过Multisim软件对Boost变换器CCM电路进行仿真,确保了设计的可行性。 4. 设计电路的性能指标: - 文章中提到了输出电压Uo=36V,开关频率fs=40kHz,输出功率Po=30W等性能指标。这些指标对于评估Boost变换器性能至关重要。 - 文章还提到了变换器在CCM和DCM(不连续电流模式)两种不同工作状态下的性能,CCM模式相比DCM模式在相同条件下有更高的输出电流。 5. 变换器电路的具体元件参数: - 电路中的关键元件如电感(L)、电容(C)、二极管(VD)、MOSFET晶体管(IRF641)以及负载电阻(RL)都有特定的参数值,这些参数值的选择直接影响到变换器的效率和性能。 - 文章中提到了不同电阻值(Rs)对变换器性能的影响。例如,Rs的不同值对应于不同的电感电流最大值(ILmax),从而影响到变换器的功率效率(η)。 6. 设计验证和结果: - 设计验证包括了理论分析、仿真测试和实际电路测试。理论分析为设计提供基础,仿真测试为理论分析提供进一步的验证,实际电路测试则确保设计在实际应用中达到预期性能。 - 实验结果表明,设计的Boost变换器在CCM模式下能很好地满足输出性能的设计要求,说明了采用UC3843电流型PWM控制芯片进行设计的有效性和可行性。 通过以上分析,我们可以了解到基于UC3843的CCM模式Boost变换器设计涉及到了电路原理、PWM控制技术、仿真验证等多个方面的专业知识。设计者必须对这些知识点有深入的了解才能完成类似的设计任务。
2025-07-14 14:39:21 375KB uc3843 BOOST
1
在当今电子设计领域,高效、稳定、小型化的电源系统成为技术发展的必然趋势,半桥LLC谐振变换器以其优越的性能在众多开关电源技术中脱颖而出。半桥LLC谐振变换器是一种典型的高频变压器设计,它结合了半桥结构与LLC谐振网络,被广泛应用于通信电源、电子设备、航天及电动汽车充电站等对性能要求极高的领域。 我们来了解一下半桥LLC型谐振变换器的拓扑结构。该变换器由四个主要部分构成:输入电源、谐振电路、变压器以及输出电路。在这四个部分中,谐振电路是整个变换器的核心。它不仅决定了整个系统的能量传输效率,还影响到输出电压的稳定性。通过精心设计的谐振电路,可以有效减少高频运行时的损耗,并降低对变压器设计的要求。 接下来,我们探讨一下高频变压器的设计过程,这是半桥LLC型谐振变换器设计中的重中之重。在设计过程中,我们需要按照以下步骤进行: 1. 确定变压器的基本参数,包括变压器的类型、尺寸、所用材料、绕组数等。这些参数将决定变压器的总体性能和适用范围。 2. 精心选择合适的磁芯材料。磁芯材料的选择对于高频变压器性能有着决定性的影响,它关系到变压器在高频运行时的损耗大小、热稳定性及整体效率。 3. 设计绕组结构。绕组结构的设计关乎到变压器的性能表现,良好的绕组结构设计能够进一步优化磁通分布,减少漏感和分布电容,从而提高变压器的工作效率和可靠性。 4. 优化变压器设计。设计师需要通过计算机模拟和实际测试来不断调整和优化设计方案,力求在保证性能的同时减小尺寸,提高效率,确保设计出的变压器在实际工作中既高效又可靠。 AP法(即铁氧体磁芯的功率损耗法)在高频变压器设计中具有广泛的应用。AP法是一种有效的设计工具,能够帮助设计师快速确定变压器的基本参数,如尺寸、材料和绕组数等,同时它还能指导设计师进行变压器的优化设计,以提升变压器的效率和可靠性。 应用AP法和优化设计,赵慧超在其论文《半桥LLC谐振电路知识详解-半桥LLC型谐振变换器的高频变压器设计》中展示了具体的高频变压器设计结果:选定了EE-100型号的变压器,绕组数为59和80,采用了18号导线。设计出的变压器效率高达95%以上,损耗仅为16.187瓦。 半桥LLC型谐振变换器的高频变压器设计不仅要求工程师具备扎实的理论基础和丰富的实践经验,还需运用现代计算机辅助设计工具。通过这样精密的设计流程,可以解决开关电源在高频运行时遇到的诸如高频损耗、输出电压不稳定、发热量大等常见问题。这样的设计方法不仅提高了电源系统的整体性能,而且对于推动电源技术的进一步革新有着积极的意义。在电子设计领域,这种对电源效率和稳定性的不懈追求,将驱动更多创新技术的涌现,为各行各业提供更为高效、可靠、便捷的电源解决方案。
2025-07-11 15:45:36 630KB 电子设计
1
移相全桥FSFB变换器仿真:隔离型DC-DC输出电压闭环控制测试,在plecs与matlab simulink环境下的应用研究,移相全桥FSFB变换器仿真研究:隔离型DC-DC变换器闭环控制的测试与实践,利用PLECS和MATLAB Simulink平台,移相全桥(FSFB)变器 隔离型DC-DC变器仿真 输出电压闭环控制,采用移相控制方式 测试环境为plecs、matlab simulink ~ ,移相全桥(FSFB)变换器; 隔离型DC-DC变换器仿真; 输出电压闭环控制; 移相控制方式; plecs仿真; matlab simulink测试环境。,移相全桥变换器仿真:隔离型DC-DC输出电压闭环控制测试
2025-07-10 11:05:41 3.19MB edge
1