卡尔曼的论文,卡尔曼滤波器第一次在此论文中提出。
2022-12-25 17:11:12 167KB kalman filter
1
论文Deep_Convolutional_Neural_Network_for_Inverse_Problems_in_Imagin
2022-12-06 17:26:37 20.93MB CT图像重建 CT算法研究 论文
1
最小二乘
2022-11-30 20:32:52 394KB 最小二乘
1
Classification problems are significant because they constitute a meta-model for multiple theoretical and practical applications from a wide range of fields. The belief rule based (BRB) expert system has shown potentials in dealing with both quantitative and qualitative information under uncertainty. In this study, a BRB classifier is proposed to solve the classification problem. However, two challenges must be addressed. First, the size of the BRB classifier must be controlled within a feasible
2022-11-07 20:00:54 995KB Classification problems; Belief rule
1
Common problems.zip Common problems.zip
2022-11-01 18:06:25 54KB Commonproblems.
1
一本经典微分方程有限元方面的书,欧洲顶级理工大学教材!清晰版本
2022-10-28 11:09:36 8.25MB 微分方程 数值方法
1
This textbook evolved from a course in geophysical inverse methods taught during the past two decades at New Mexico Tech, first by Rick Aster and, subsequently, jointly between Rick Aster and Brian Borchers. The audience for the course has included a broad range of first- or second-year graduate students (and occasionally advanced under- graduates) from geophysics, hydrology, mathematics, astrophysics, and other disciplines. Cliff Thurber joined this collaboration during the production of the first edition and has taught a similar course at the University of Wisconsin-Madison. Our principal goal for this text is to promote fundamental understanding of param- eter estimation and inverse problem philosophy and methodology, specifically regarding such key issues as uncertainty, ill-posedness, regularization, bias, and resolution. We emphasize theoretical points with illustrative examples, and MATLAB codes that imple- ment these examples are provided on a companion website. Throughout the examples and exercises, a web icon indicates that there is additional material on the website. Exercises include a mix of applied and theoretical problems. This book has necessarily had to distill a tremendous body of mathematics and science going back to (at least) Newton and Gauss. We hope that it will continue to find a broad audience of students and professionals interested in the general problem of estimating physical models from data. Because this is an introductory text surveying a very broad field, we have not been able to go into great depth. However, each chapter has a “notes and further reading” section to help guide the reader to further explo- ration of specific topics. Where appropriate, we have also directly referenced research contributions to the field. Some advanced topics have been deliberately left out of this book because of space limitations and/or because we expect that many readers would not be sufficiently famil- iar with the required mathematics. For example, readers with a strong mathematical background may be surprised that we primarily consider inverse problems with discrete data and discretized models. By doing this we avoid much of the technical complexity of functional analysis. Some advanced applications and topics that we have omitted include inverse scattering problems, seismic diffraction tomography, wavelets, data assimilation, simulated annealing, and expectation maximization methods. We expect that readers of this book will have prior familiarity with calculus, dif- ferential equations, linear algebra, probability, and statistics at the undergraduate level. In our experience, many students can benefit from at least a review of these topics, and we commonly spend the first two to three weeks of the course reviewing material from
2022-10-15 15:36:14 6.14MB inverse problems
1
内含三种翻译工具翻译的文章,以及英汉对照
2022-09-19 14:04:18 42.34MB 2022_MCM_ICM_Pro 美赛翻译 2022 数学建模
1
Complete Algorithms for Cooperative Pathfinding Problems
2022-08-29 19:29:49 761KB CompleteAlgorit
1
Inverse problems arise when we reconstruct a sharper image from a blurred one or reconstruct the underground mass density from measurements of the gravity above the ground. When we solve an inverse problem, we compute the source that gives rise to some observed data using a mathematical model for the relation between the source and the data. This book gives an introduction to the practical treatment of inverse problems by means of numerical methods, with a focus on basic mathematical and computational aspects. To solve inverse problems, we demonstrate that insight about them goes hand in hand with algorithms. Discrete Inverse Problems: Insight and Algorithms includes a number of tutorial exercises that give the reader hands-on experience with the methods, difficulties, and challenges associated with the treatment of inverse problems. It also includes examples and figures that illustrate the theory and algorithms. Audience This book is written for graduate students, researchers, and professionals in engineering and other areas that depend on solving inverse problems with noisy data. The aim is to provide readers with enough background that they can solve simple inverse problems and read more advanced literature on the subject. Contents Preface; List of Symbols; Chapter 1: Introduction and Motivation; Chapter 2: Meet the Fredholm Integral Equation of the First Kind; Chapter 3: Getting to Business: Discretizations of Linear Inverse Problems; Chapter 4: Computational Aspects: Regularization Methods; Chapter 5: Getting Serious: Choosing the Regularization Parameter; Chapter 6: Toward Real-World Problems: Iterative Regularization; Chapter 7: Regularization Methods at Work: Solving Real Problems; Chapter 8: Beyond the 2-Norm: The Use of Discrete Smoothing Norms; Appendix A: Linear Algebra Stuff; Appendix B: Symmetric Toeplitz-Plus-Hankel Matrices and the DCT; Appendix C: Early Work on 揟ikhonov Regularization? Bibliography; Index. About the Author Per Christian Hansen is Professor of Scientific Computing at the Technical University of Denmark. His publications include two other books on inverse problems, several MATLAB?packages, and many papers on inverse problems, matrix computations, and signal processing. His home page is http://www2.imm.dtu.dk/~pch/. To request an examination copy or desk copy of this book, please use our online request form at www.siam.org/catalog/adopt.php.
2022-08-09 09:33:04 3.59MB Inverse problems regularization parameter
1