Factor Graphs for Robot Perception.pdf Factor Graphs for Robot Perception.pdf Factor Graphs for Robot Perception.pdf Factor Graphs for Robot Perception.pdf Factor Graphs for Robot Perception.pdf Factor Graphs for Robot Perception.pdf
2021-12-08 08:04:30 4.35MB SLAM
1
We review the use of factor graphs for the modeling and solving of large-scale inference problems in robotics. Factor graphs are a family of probabilistic graphical models, other examples of which are Bayesian networks and Markov random fields, well known from the statistical modeling and machine learning literature. They provide a powerful abstraction that gives insight into particular inference problems, making it easier to think about and design solutions, and write modular software to perform the actual inference. We illustrate their use in the simultaneous localization and mapping problem and other important problems associated with deploying robots in the real world. We introduce factor graphs as an economical representation within which to formulate the different inference problems, setting the stage for the subsequent sections on practical methods to solve them.We explain the nonlinear optimization techniques for solving arbitrary nonlinear factor graphs, which requires repeatedly solving large sparse linear systems. The sparse structure of the factor graph is the key to understanding this more general algorithm, and hence also understanding (and improving) sparse factorization methods. We provide insight into the graphs underlying robotics inference, and how their sparsity is affected by the implementation choices we make, crucial for achieving highly performant algorithms. As many inference problems in robotics are incremental, we also discuss the iSAM class of algorithms that can reuse previous computations, re-interpreting incremental matrix factorization methods as operations on graphical models, introducing the Bayes tree in the process. Because in most practical situations we will have to deal with 3D rotations and other nonlinear manifolds, we also introduce the more sophisticated machinery to perform optimization on nonlinear manifolds. Finally, we provide an overview of applications of factor graphs for robot perception, showing the broad impact fa
2021-11-30 16:18:40 1.38MB Factor Graphs Robot Perception
1
《Modeling Color Difference for Visualization Design》,该论文是2017年的一篇最佳会议论文,对可视化中的色差进行建模,比较有创新性,作为图形学课程报告,由于我专业不是图形方向,对这个不太了解,一开始入手很难理解,花了几天啃出来的重要内容都在报告中说明了~
2021-10-15 20:30:56 2.55MB Color Perception Graphical Perception
1
Factor Graphs for Robot Perception.pdf
2021-08-16 22:00:52 4.27MB Robot
1
baidu apollo project doc v5.5.0
2021-07-24 18:03:33 9.69MB apollo
1
Baidu Apollo: Perception of Low-Cost Autonomous Driving
2021-07-24 18:03:32 247KB Apollo
1
object_recognition 3D物体识别相关包
2021-07-11 17:03:03 1.29MB C++
1
car-perception-master车辆识别开源程序 python开发
2021-05-06 12:09:10 302.31MB 深度学习 车辆识别 python
1
机器人感知 该存储库展示了马里兰大学ENPM673课程中完成的项目。 本课程专门设计用于提供对机器人感知的见解,包括从最基本的主题(例如各种图像转换)到最新的算法(例如单眼视觉测距法)。 在本节中,将简要介绍本课程中完成的每个项目。 下面列出了本课程中完成的项目,请单击链接进入特定部分: 请注意,所有代码均已在MATLAB 2016b和MATLAB 2017a上进行了测试和运行。 还要注意,对于视觉里程表项目,您将需要Mathworks Inc.提供的MATLAB的Computer Vision工具箱。可以在找到。 增强现实 这是使用非常基本的概念(例如图像变换和单应性)来生成非常强大的结果(
2021-03-21 17:20:21 754.61MB robotics matlab peception MATLABC
1
这项与事件相关的潜能(ERP)研究检查了语音识别中上下文相关说话者标准化的时间过程。 我们发现三个ERP组件,即N1(100-220毫秒),N400(250-500毫秒)和后期正向组件(500-800毫秒),它们被推测涉及(a)听觉处理,(b)说话者标准化和词汇检索,以及(c)决策过程/词汇选择。 说话人标准化可能发生在N400的时间窗口中,并且与词汇检索过程重叠。 与非语音上下文相比,无论语音上下文是否具有语义内容,它们都使收听者能够调整到讲话者的音调范围。 以这种方式,语音上下文在潜在的候选词的激活过程中诱导了更有效的说话者归一化,并导致在语音单词识别中更准确地选择了预期的单词。
2021-02-24 18:04:55 1024KB Talker normalization; Tone perception;
1