T型3电平逆变器及其配套LCL滤波器的设计与损耗计算。首先概述了T型3电平逆变器的特点及其在高压大功率应用中的优势。接着重点讨论了LCL滤波器的参数计算,包括截止频率、电感和电容的选择,并通过MathCAD进行了多次迭代优化。随后,文章阐述了半导体器件(如IGBT)的损耗计算方法,涉及导通损耗和开关损耗。此外,还探讨了逆变电感的参数设计及其损耗计算。最后,利用PLECS软件进行了仿真实验,采用电压外环和电流内环的控制策略,并加入有源阻尼,验证了设计方案的有效性和性能。 适合人群:从事电力电子系统设计的研究人员和技术人员,尤其是对T型3电平逆变器和LCL滤波器感兴趣的工程师。 使用场景及目标:适用于需要深入了解T型3电平逆变器及其LCL滤波器设计原理和损耗计算的专业人士。目标是掌握参数优化的方法,并通过仿真工具验证设计方案的可行性。 其他说明:文中提供了详细的计算步骤和仿真流程,有助于读者理解和实践相关技术。
2025-08-11 10:28:48 3.65MB 电力电子 PLECS
1
内容概要:本文详细介绍了T型3电平逆变器及其配套LCL滤波器的设计与损耗计算。首先概述了T型3电平逆变器的特点及其应用场景,接着重点讨论了LCL滤波器参数的计算方法,包括截止频率、电感和电容的额定值选择,并通过MathCAD进行反复迭代优化。随后,文章深入探讨了半导体器件(如IGBT)的损耗计算,涵盖导通损耗和开关损耗。此外,还涉及逆变电感的参数设计及损耗计算,考虑了电感的额定电流、电压和温度等因素。最后,利用PLECS进行了仿真实验,采用电压外环、电流内环的控制策略并加入有源阻尼,验证了设计方案的有效性和性能。 适合人群:从事电力电子系统设计的研究人员和技术人员,尤其是对T型3电平逆变器和LCL滤波器感兴趣的工程师。 使用场景及目标:适用于需要深入了解T型3电平逆变器及其LCL滤波器设计原理和损耗计算的专业人士,旨在提供从理论到实际应用的全面指导,帮助优化电力电子系统的性能。 其他说明:文中提供了详细的参数计算步骤和PLECS仿真的具体操作流程,有助于读者更好地理解和实践相关技术。
2025-08-11 10:22:52 6.34MB 电力电子 PLECS
1
在现代电力电子和自动控制系统的研究与开发中,使用仿真软件进行电路设计和控制策略验证是一项至关重要的工作。PLECS(Piecewise Linear Electrical Circuit Simulation)是一款专注于电力电子系统仿真的软件工具,它能够对复杂的电力电子系统进行快速精确的仿真分析。本篇内容将详细解析NPC(Neutral Point Clamped,中点钳位)三电平逆变器的PLECS仿真文件,特别强调其中包含的由Visual Studio(VS)编写控制程序以及如何调用DLL(Dynamic Link Library,动态链接库)文件来完成仿真。 NPC三电平逆变器是一种常见的电力转换装置,它通过在直流电源和交流负载之间提供三电平的电压输出来降低输出电压的谐波含量,从而提高系统的效率和性能。与传统的两电平逆变器相比,NPC三电平逆变器在处理高功率应用时,尤其是在电机驱动和可再生能源系统中,具有显著的优势,如能更好地控制电流和电压,减少电磁干扰,以及降低开关损耗等。 PLECS仿真文件通常包含了电力电子电路的拓扑结构、元件参数、控制策略以及仿真环境设置等。在本例中,文件WB_inverter.plecs应该是包含NPC三电平逆变器电路设计和参数配置的PLECS仿真模型文件。这个文件可以被PLECS软件读取和执行,以模拟NPC逆变器在不同控制策略下的工作状态。 文件WB_inverter.dll可能是一个动态链接库文件,它在PLECS仿真中可能扮演了与VS编写的控制程序交互的角色。在PLECS中,用户可以通过编写控制程序来实现特定的算法和控制逻辑,而这些控制程序可以通过编译成DLL文件与PLECS仿真环境进行交互。DLL文件是微软公司开发的一种可以包含可执行代码、数据或资源的模块化组件,它能够在多个程序中被共享和重复使用。 控制程序通常包含了逆变器的调制策略,如载波脉宽调制(SPWM,Sine Pulse Width Modulation)等。SPWM是一种常见的逆变器控制方法,通过调整开关器件的开通和关断时间来控制输出电压的大小和频率。在DLL文件中,可能包含了针对NPC逆变器优化的SPWM算法,以及在PLECS中进行仿真的相关接口和数据交换机制。 文件WB_inverter20190304SPWM可用,从文件名推测,这可能是控制程序的一个版本,包含了特定日期(2019年3月4日)编写的SPWM算法,且该算法已被验证可用。开发者可能通过日期标记来区分不同版本的控制程序,以便于管理和维护。 该压缩包中的文件构成了一个完整的仿真环境,允许研究人员和工程师模拟NPC三电平逆变器在PLECS软件中的运行情况,评估控制策略的有效性,并优化逆变器性能。通过这种仿真,可以在实际硬件制造之前预测和解决可能出现的问题,节省开发成本,并加速产品上市时间。
1
内容概要:本文详细介绍了11kW车载充电机(OBC)的三相功率因数校正(PFC)仿真模型,重点探讨了使用PLECS进行仿真建模的方法和技术细节。主要内容包括:① 如何导入MOSFET的Spice模型并设置热参数,实现对管子损耗和结温的精确仿真;② 控制环路的设计,尤其是SPWM调制配合电压外环和电流内环的具体参数调整方法;③ 损耗计算的技术要点,强调了开关损耗和导通损耗的区别及其占比;④ 实战经验和常见错误,如仿真步长的选择和散热器参数的正确设定。通过这些内容,展示了如何利用PLECS高效地完成高精度的PFC仿真。 适合人群:从事电力电子设计、仿真工作的工程师和技术人员,尤其适用于对三相PFC技术和PLECS仿真工具有一定了解的专业人士。 使用场景及目标:① 需要在项目中构建高效的三相PFC仿真模型;② 希望深入了解PLECS仿真工具的功能和应用技巧;③ 掌握MOSFET Spice模型的导入和热参数设置方法;④ 学习如何优化控制环路参数以提高系统性能。 其他说明:文中提供了具体的配置代码和参数设置实例,有助于读者快速上手实际操作。同时,作者分享了丰富的实战经验,帮助避免常见的仿真陷阱。
2025-07-29 08:49:14 531KB
1
三电平Buck变换器仿真模型:PWM控制方式与多种闭环控制策略,含单向与双向结构,Matlab Simulink与Plecs运行环境文件齐全,三电平Buck变换器仿真模型:PWM控制及多种闭环方式(含开环控制、双向结构,适用于Matlab Simulink和Plecs运行环境),三电平buck变器仿真模型 采用PWM控制方式 模型内包含开环控制和闭环控制 闭环控制包含输出电压闭环和输出电压电流双闭环两种方式 单向结构和双向结构都有 联系请注明需要哪种结构 matlab simulink plecs等运行环境的文件都有 ~ ,三电平Buck变换器; PWM控制; 开环控制; 闭环控制; 输出电压闭环; 输出电压电流双闭环; 单向结构; 双向结构; Matlab Simulink; PLECS文件。,三电平Buck变换器PWM控制仿真模型:开环与闭环输出电压电流双环控制
2025-07-28 18:19:56 1.18MB 柔性数组
1
在电力电子领域中,BUCK拓扑作为一种广泛使用的DC-DC转换器,其功能是降低直流电压。随着数字控制技术的发展,数字电源系统已经逐渐取代了传统的模拟控制系统。PLECS(Piecewise Linear Electrical Circuit Simulation)是一款强大的电力电子系统仿真软件,特别适合进行复杂电源系统的建模和仿真。本文将详细介绍如何使用PLECS软件对基于BUCK拓扑的数字电源进行仿真。 BUCK转换器的基本工作原理是通过开关元件的周期性通断,将输入的直流电压转换为所需的较低直流电压输出。它由几个基本组件构成,包括开关管、二极管、储能电感、滤波电容和负载。开关管通常是MOSFET或IGBT,负责控制电路的导通与关断;二极管作为自由轮功能,用于续流;储能电感和滤波电容则用于平滑输出电压和电流,减少纹波。 在PLECS中进行BUCK拓扑的数字电源仿真时,可以采取模块化的设计思路。根据BUCK转换器的结构,在PLECS中搭建电路模型,包括输入直流电压源、开关模块、电感、电容和负载。接着,需要为这个电路模型添加数字控制环节,这是数字电源仿真区别于传统模拟仿真之处。数字控制器通常包括一个或多个数字信号处理器(DSP)、微控制器(MCU)或者其他形式的数字处理单元。 在数字控制器的设计过程中,通常会用到数字控制算法,比如PID控制、状态空间控制等。这些控制算法需要编写相应的代码,并在PLECS中通过DLL(Dynamic Link Library,动态链接库)调用实现。PLECS软件支持通过DLL将Matlab/Simulink中开发的控制算法与PLECS的电路模型相结合,这使得PLECS能够模拟真实的数字控制器对电源系统的控制效果。 在本次的仿真案例中,提供了两个PLECS文件:BUCK_DI.plecs和BUCK_AN.plecs。这两个文件很可能分别代表了数字控制和模拟控制下的BUCK转换器仿真模型。通过对比这两个文件,可以观察到数字控制相比于模拟控制的优势和特点,比如更精确的控制性能、更好的动态响应能力以及更方便的参数调整等。 此外,PLECS仿真中还可能包括对BUCK转换器在不同工作条件下,如不同负载、不同开关频率以及不同输入电压下的性能测试。这样可以全面地评估数字电源系统的性能,确保系统设计满足要求。在仿真实验中,通常还会分析系统的稳定性、效率、输出电压和电流的纹波大小等关键指标。 PLECS软件提供了一个高效、直观的平台,使得工程师能够对基于BUCK拓扑的数字电源进行详尽的设计和仿真。通过模拟真实的工作条件和控制策略,可以显著减少实物原型的测试次数,节省研发时间和成本,提高设计的成功率。
2025-07-19 16:18:12 1.17MB PLECS仿真 Dll调用
1
半桥与全桥LLC仿真中的谐振变换器四种控制方式探索:频率控制PFM、PWM、移相控制PSM及混合控制PFM+PSM在Plecs、Matlab Simulink环境下的应用。,半桥与全桥LLC仿真中的谐振变换器四种基本控制方式:频率控制PFM、PWM控制、移相控制PSM与混合控制PFM+PSM在plecs、matlab及simulink环境下的应用。,半桥 全桥LLC仿真,谐振变器的四种基本控制方式。 主要有 频率控制PFM PWM控制 移相控制PSM 混合控制PFM+PSM 运行环境有plecs matlab simulink ,半桥; 全桥LLC仿真; 谐振变换器; 控制方式:频率控制PFM; PWM控制; 移相控制PSM; 混合控制PFM+PSM; 运行环境:plecs; matlab; simulink。,半桥全桥LLC仿真研究:四种谐振变换器控制方式探索运行环境:Plecs与Matlab Simulink的比较与运用
2025-07-16 16:46:13 3.35MB istio
1
"基于Heric拓扑的逆变器离网并网仿真模型:支持非单位功率因数负载与功率因数调节,共模电流抑制能力突出,采用PR单环控制与SogiPLL锁相环技术,LCL滤波器,适用于Plecs 4.7.3及以上版本",#Heric拓扑并离网仿真模型(plecs) 逆变器拓扑为:heric拓扑。 仿真说明: 1.离网时支持非单位功率因数负载。 2.并网时支持功率因数调节。 3.具有共模电流抑制能力(共模电压稳定在Udc 2)。 此外,采用PR单环控制,具有sogipll锁相环,lcl滤波器。 注:(V0004) Plecs版本4.7.3及以上 ,Heric拓扑; 离网仿真; 并网仿真; 非单位功率因数负载; 功率因数调节; 共模电流抑制; 共模电压稳定; PR单环控制; SOGIPLL锁相环; LCL滤波器; Plecs版本4.7.3以上。,"Heric拓扑:离网并网仿真模型,支持非单位功率因数与共模电流抑制"
2025-07-16 11:42:25 714KB 数据仓库
1
移相全桥FSFB变换器仿真:隔离型DC-DC输出电压闭环控制测试,在plecs与matlab simulink环境下的应用研究,移相全桥FSFB变换器仿真研究:隔离型DC-DC变换器闭环控制的测试与实践,利用PLECS和MATLAB Simulink平台,移相全桥(FSFB)变器 隔离型DC-DC变器仿真 输出电压闭环控制,采用移相控制方式 测试环境为plecs、matlab simulink ~ ,移相全桥(FSFB)变换器; 隔离型DC-DC变换器仿真; 输出电压闭环控制; 移相控制方式; plecs仿真; matlab simulink测试环境。,移相全桥变换器仿真:隔离型DC-DC输出电压闭环控制测试
2025-07-10 11:05:41 3.19MB edge
1
基于PLECS仿真的IEEE顶刊复现研究:DAB变换器峰值电流前馈控制策略的优化与实现,基于PLECS仿真的IEEE顶刊复现研究:DAB变换器峰值电流前馈控制策略的深入探讨与分析,PLECS仿真,IEEE顶刊复现,DAB变器峰值电流前馈控制策略。 ,PLECS仿真; IEEE顶刊复现; DAB变换器; 峰值电流前馈控制策略,"PLECS仿真下DAB变换器峰值电流前馈控制策略复现IEEE顶刊研究" 随着电力电子技术的不断进步,DAB(Dual Active Bridge)变换器在电力转换领域得到了广泛的应用。由于其在功率传输、能量管理和电气隔离等方面具有显著优势,DAB变换器成为国内外研究的热点之一。本研究聚焦于DAB变换器的峰值电流前馈控制策略,通过PLECS仿真软件对IEEE顶刊中的相关研究进行复现与优化,旨在提升变换器的性能和可靠性。 PLECS是一种专门用于电力电子系统的仿真软件,它支持复杂的电路设计和控制策略的仿真测试。通过对DAB变换器的深入分析,研究团队复现了IEEE顶刊上发表的相关论文,这些论文详细讨论了峰值电流前馈控制策略的理论基础和实际应用。在这些研究的基础上,本研究团队通过PLECS仿真验证了这些控制策略的有效性,并对其中的控制参数进行了优化,以期得到更加理想的输出性能。 峰值电流前馈控制策略在DAB变换器中扮演着重要角色。它通过实时监测变换器中的电流峰值,并将其作为控制输入,能够快速响应负载的变化,从而实现对变换器输出电压或电流的精确控制。该控制策略的优点在于可以提高系统的动态响应速度,增强系统的稳定性,并减少能量的损耗。 在复现IEEE顶刊研究的过程中,研究团队不仅要对变换器的工作原理和控制策略有深入的理解,还需要掌握PLECS仿真软件的操作技巧。仿真工作包括建立精确的变换器电路模型、设计合适的控制算法、设置适当的仿真参数等。这些步骤需要研究者具备电力电子、控制理论和计算机仿真等多方面的知识。 通过本次复现研究,研究团队发现了一些可以进一步优化的点。例如,针对变换器在轻载和重载情况下的不同表现,对峰值电流前馈控制策略进行细化调整;针对变换器在启动和稳态运行时的不同特点,采取分阶段控制策略;以及针对变换器在高温和低温环境下的性能差异,进行温度补偿控制等。这些优化措施均通过PLECS仿真得到验证,并在仿真模型中得到了体现。 此外,研究团队还将复现的仿真结果与实际的硬件实验结果进行了对比,以验证仿真模型的准确性。通过这种对比分析,研究者可以更深入地理解DAB变换器的工作原理,以及峰值电流前馈控制策略在实际应用中的效果和局限性。这样的研究不仅有助于推动电力电子技术的发展,也能为相关领域的工程师和研究人员提供宝贵的经验和参考。 在研究过程中,团队成员还制作了相关的文档和图表,以图形化的方式展示仿真过程和结果。这包括了仿真模型的建立过程、仿真波形的捕捉、以及不同控制参数下变换器性能的对比分析等。这些文档和图表被整理为报告,方便其他研究者和工程师理解和复现这些工作。 本研究通过PLECS仿真对IEEE顶刊中DAB变换器的峰值电流前馈控制策略进行了复现与优化,不仅验证了原有研究的有效性,还提出了一系列创新的优化措施。这些工作为DAB变换器的进一步研究和应用提供了坚实的基础,并为电力电子领域的发展做出了贡献。
2025-07-07 09:29:03 1.28MB 开发语言
1