激光雷达经典著作,所有章节。
2023-11-05 11:43:14 8.08MB Lidar
1
目标跟踪和碰撞时间估计 这是Udacity传感器融合纳米度的第二个项目。 我融合了来自KITTI数据集的相机和LiDAR测量值,以检测,跟踪3D空间中的物体并估算碰撞时间。 首先,我用YOLOv3处理图像以检测和分类对象。 下图显示了结果。 基于YOLOv3发现的边界框,我开发了一种通过关键点对应关系随时间跟踪3D对象的方法。 接下来,我使用了两种不同的方法来计算碰撞时间(TTC),分别是基于LiDAR和基于相机的TTC。 环境的结构由主要讲师Andreas Haja构建。 基于LiDAR的TTC 我通过使用齐次坐标将前车的3D LiDAR点投影到2D图像平面中。 投影如下图所示。接下来,我将3D LiDAR点分布到相应的边界框。 最后,我根据不同帧的对应边界框中最接近的3D LiDAR点计算了TTC。 基于摄像头的TTC 我使用检测器/描述符的各种组合来找到每个图像中的关键点,并在
2023-05-18 00:00:59 132.97MB C++
1
注意:不支持Ubuntu 16.04及更低版本 FAST-LIO 2.0 将于2021年3月底发射。 新的功能: 更快更好 更高的频率; 更多的LiDAR支持(Horizo​​n和Ouster 64); 支持基于ARM的嵌入式平台。 FAST-LIO FAST-LIO (快速LiDAR惯性里程计)是一种计算效率高且功能强大的LiDAR惯性里程计套件。它使用紧密耦合的迭代扩展卡尔曼滤波器将LiDAR特征点与IMU数据融合在一起,从而在发生退化的快速运动,嘈杂或混乱的环境中实现强大的导航能力。我们的软件包解决了许多关键问题: 快速迭代的卡尔曼滤波器,用于里程计优化; 在最稳定的环境下自动初始化; 并行KD-Tree搜索以减少计算量; 强大的特征提取; 开发者 :激光贴图和姿势优化; :特征提取。 要了解更多详细信息,请参阅我们的相关文章:) 我们的相关论文:现在可以在arxiv上获得我
2023-04-12 23:01:25 28.47MB lidar-odometry livox-avia-lidar C++
1
该附件包含了市面上常用的TOF芯片的数据手册与参考程序,有TI的TDC7200和TDC7201,以及ACAM公司的TDC-GP22芯片。 可用于TOF激光雷达、超声水表以及其他需要精密测时的领域。
2023-04-12 15:01:30 51.17MB 嵌入式 TDC
1
jakteristics:从python计算点云几何特征
2023-04-12 11:06:57 159KB python processing lidar feature
1
OpenLIDAR 足够简单的扫描激光测距仪。 基于三角剖分的方法。 使用了STM32F303 + ELIS-1024传感器。 关于它的俄语文章: : 阅读Wiki了解更多信息。 视频-安装在Roomba的激光雷达: : 4vZgepiK1K4 我还有另一个更简单的激光雷达项目: : 另请参阅我的TOF Lidar项目: :
2023-04-07 09:51:21 2.87MB laser stm32 triangulation lidar
1
Recent developments in laser scanning technologies have provided innovative solutions for acquiring three-dimensional (3D) point clouds about road corridors and its environments. Unlike traditional field surveying, satellite imagery, and aerial photography, laser scanning systems offer unique solutions for collecting dense point clouds with millimeter accuracy and in a reasonable time. The data acquired by laser scanning systems empower modeling road geometry and delineating road design parameters such as slope, superelevation, and vertical and horizontal alignments. These geometric parameters have several geospatial applications such as road safety management. The purpose of this book is to promote the core understanding of suitable geospatial tools and techniques for modeling of road traffic accidents by the state-of-the-art artificial intelligence (AI) approaches such as neural networks (NNs) and deep learning (DL) using traffic information and road geometry delineated from laser scanning data. Data collection and management in databases play a major role in modeling and developing predictive tools. Therefore, the first two chapters of this book introduce laser scanning technology with creative explanation and graphical illustrations and review the recent methods of extracting geometric road parameters. The third and fourth chapters present an optimization of support vector machine and ensemble tree methods as well as novel hierarchical object-based methods for extracting road geometry from laser scanning point clouds. Information about historical traffic accidents and their circumstances, traffic (volume, type of vehicles), road features (grade, superelevation, curve radius, lane width, speed limit, etc.) pertains to what is observed to exist on road segments or road intersections. Soft computing models such as neural networks are advanced modeling methods that can be related to traffic and road features to the historical accidents and generates regression equations that can be used in various phases of road safety management cycle. The regression equations produced by NN can identify unsafe road segments, estimate how much safety has changed following a change in design, and quantify the effects of road geometric features and traffic information on road safety. This book aims to help graduate students, professionals, decision makers, and road planners in developing better traffic accident prediction models using advanced neural networks.
2023-03-22 16:49:12 8.29MB neural networks deep learning
1
采用朴素贝叶斯算法对雷达点云数据进行分类,先构建kd树对点云领域进行搜寻,后提取点云的法向量、残差、主成分及高程差作为朴素贝叶斯算法的参数,运行程序可得到分类结果图。 (1)主程序为Classify.m (2)../data里为txt格式的训练样本与测试样本点云数据。
2023-03-13 23:54:12 3.61MB LiDAR点云 Matlab
1
一款小型的处理机载LiDAR点云的软件,C++源码以及可执行文件
2023-03-03 19:35:08 17.85MB LiDAR点云 lastools
1
Points2Grid 通过OpenTopography设施( )运行的数千个作业得到了证明,Points2Grid是一个强大的可扩展工具,可以使用本地网格方法生成数字高程模型(DEM)。 局部网格化算法根据用户提供的半径,使用围绕每个网格单元定义的圆形邻域来计算网格单元高程。 此邻域称为bin,而网格单元称为DEM节点。 对于落在仓中的点,最多可以计算四个值(最小值,最大值,平均值或反距离加权(IDW)平均值)。 然后将这些值分配给相应的DEM节点,并用于表示该bin表示的邻域上的海拔变化。 如果在给定的bin中未找到任何点,则DEM节点将收到一个空值。 Points2Grid服务还提供了空值归档选项,该选项通过3、5或7个像素的方形移动窗口应用反距离加权焦点均值,以填充DEM中具有空值的像元。 如果LIDAR发射密度超过根据这些数据生成的网格的分辨率,Points2Grid所采用的
2023-03-01 14:46:32 240KB C++
1