对于带未知互协方差的两传感器系统, 提出一种协方差交叉(CI) 融合鲁棒稳态Kalman 滤波器, 它关于未知
互协方差具有鲁棒性. 严格证明了该滤波器的实际精度高于每个局部滤波器的精度, 但低于带已知互协方差的最优
融合Kalman 滤波器的精度. 基于协方差椭圆给出了精度关系的几何解释. 进一步将上述结果推广到一般多传感器情
形. 一个跟踪系统的Monte-Carlo 仿真例子表明, 其实际精度接近于带已知互协方差的最优融合器的精度.

1
通过卡尔曼滤波进行有效GP回归 基于两篇论文的存储库,其中包含相对于同类项目的简单实现代码: [1] A.Carron,M.Todescato,R.Carli,L.Schenato,G.Pillonetto,机器学习遇到了Kalman Filtering ,《 2016年第55届决策与控制会议论文集》,第4594-4599页。 [2] M.Todescato,A.Carron,R.Carli,G.Pillonetto,L.Schenato,通过卡尔曼滤波的有效时空高斯回归,ArXiv:1705.01485,已提交JMLR。 PS。 该代码尽管基于上述论文中使用的代码,但与之稍有不同。 它是它的后来的改进和简化版本。 而且,此处仍未提供[2]中介绍的用于实现自适应方法的代码。 文件内容是很容易解释的(有关每个文件的简要介绍,请参考相应的帮助): main.m:包含主程序 plotResul
1
讲述抗差Kalman滤波基本原理及其GPS变形监测中的应用
2023-04-05 21:11:08 120KB 抗差Kalman GPS
1
用卡尔曼滤波方法对单个目标航迹进行预测,并借助于Matlab仿真工具,对实验的效果进行评估。
由 Ian T. Nabney 编写的流行机器学习库“NetLab”的附加组件。 库为 NetLab 实现卡尔曼滤波器训练算法。
2023-03-29 20:19:26 596KB matlab
1
matlab建立汽车模型代码无味卡尔曼滤波器 写上去 优达学城课程,2017 年 10 月 自动驾驶汽车工程师纳米学位课程 “无味卡尔曼滤波器”项目,2018 年 3 月 克劳斯·H·拉斯穆森 使用 CTRV 运动模型在 C++ 中实现无迹卡尔曼滤波器。 两个自行车模拟数据集,数据集 1 和数据集 2(Ascii 文本文件),与 Term 2 Simulator 一起使用。 与扩展卡尔曼滤波器 (EKF) 一样,无迹卡尔曼滤波器 (UKF) 具有相同的三个步骤: 初始化 预言 更新 这些步骤编码在 ukf.cpp 文件中。 本项目使用了以下初始化参数: 初始状态协方差矩阵P_ = 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1 过程噪声标准偏差纵向加速度,单位为 m/s^2 std_a_ = 5 过程噪声标准偏差偏航加速度 rad/s^2 std_yawdd_ = 0.4 通过将预测的 UKF 值与测试数据集提供的 Ground True 值进行比较,计算位置 X & Y 和速度 VX
2023-03-23 20:18:36 1.26MB 系统开源
1
KalmanFilter,KalmanFilter3,KalmanFilter5 一共7种,以上三种实现保证可用,其余待调试,调试函数写好,直接运行即可 KalmanFilter KalmanFilter2 KalmanFilter3 KalmanFilter4 KalmanFilter5 KalmanFilter6 KalmanFilter7
2023-03-16 11:35:03 56KB KalmanFilter Kalman 卡尔曼
1
窄带物联网环境中,接收机收到的信号通常为多路混合信号,对单通道接收来说,利用常规盲源分离方法很难实现混合信号的分离和源信号提取。针对这一问题,本文提出了一种利用Kalman滤波算法进行信号估计,解决单通道盲源分离的方法。该方法利用信号间的时序结构,通过Kalman滤波算法对多信号混合中的源信号不断估计并迭代更新,最终得到分离信号。仿真实验结果表明,该方法能有效估计并分离出源信号。
1
卡尔曼滤波器的PID控制:kalman的PID控制教程(MATLAB优化算法案例分析与应用PPT课件).ppt
2023-03-11 12:57:07 942KB 卡尔曼滤波器的PID控制:kal
1

通过分析现有图象雅可比矩阵的在线辨识方法, 提出一种新的辨识思路。将雅可比矩阵的在线
估计转化为系统的状态观测, 并设计了相应的Kalman-Bucy滤波估计算法。以双目立体视觉反馈下的
运动目标跟踪任务为例, 通过仿真和实验说明了所提出方法的有效性。

1