GAN生成对抗网络实战(PyTorch版)》,2022最新升级版!本课程讲解GAN的基本原理和常见的各种GAN,提供数据集、代码和课件下载。
2022-04-19 17:05:41 531B pytorch 生成对抗网络 人工智能 python
1
分享视频教程——《GAN生成对抗网络实战(PyTorch版)》,2022最新升级版!本课程讲解GAN的基本原理和常见的各种GAN,提供数据集、代码和课件。 适用人群: 1、对GAN生成对抗网络感兴趣的 2、对PyTorch感兴趣的 3、希望研究深度学习模型的
2022-04-18 12:05:46 532B pytorch 生成对抗网络 人工智能 python
1
分享课程——GAN生成对抗网络实战(PyTorch版),2022年最新升级!提供全部的代码+课件+数据集下载! 本课程讲解GAN的基本原理和常见的各种GAN,结合论文讲原理,详细演示代码编写过程。 课程大纲如下: 章节1 GAN课程简介 章节2 GAN的基本原理和公式详解 章节3 基础GAN 章节4 DCGAN 章节5 动漫人物头像生成实例 章节6 CGAN (Conditional GAN) 章节7 Pix2pixGAN 章节8 SGAN(Semi-Supervised GAN) 章节9 CycleGAN 章节10 WGAN(Wasserstein GAN) 章节11 GAN的评价方法
2022-04-13 17:06:40 638B GAN 生成对抗网络 pytorch
1
该数据集为动漫人物头像数据集,一共有21511个动漫人物头像,供大家使用。 可以用于训练GAN,DCGAN等一系列的生成对抗神经网络的实验。具体实验方法已经更新,大家可以点击我的主页进行查看,pytorch 使用DCGAN生成动漫人物头像。 入门级实战必看的小例子,大家可以自行查看。欢迎大家进行探讨讨论,提出更优秀的训练方法。
2022-04-06 12:05:21 220.36MB DCGAN GAN 生成对抗网络 人工智能
1
甘 生成对抗网络(GAN)以生成MNIST图像。
2022-03-12 22:20:26 138KB JupyterNotebook
1
我就废话不多说了,直接上代码吧! import torch import torch.nn as nn from torch.autograd import Variable import numpy as np import matplotlib.pyplot as plt torch.manual_seed(1) np.random.seed(1) BATCH_SIZE = 64 LR_G = 0.0001 LR_D = 0.0001 N_IDEAS = 5 ART_COMPONENTS = 15 PAINT_POINTS = np.vstack([np.linspace(-1,1,AR
2022-03-06 11:39:22 80KB art c gan
1
模仿学习就是希望机器能够通过观察模仿专家的行为来进行学习。OpenAI,DeepMind,Google Brain目前都在向这方面发展。
2022-01-27 11:38:00 21.53MB 深度学习 GAN 生成对抗网络 模仿学习
1
今天小编就为大家分享一篇pytorch GAN生成对抗网络实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2021-12-03 20:46:49 74KB pytorch GAN 生成对抗网络
1
在PyTorch和PyTorch Lightning中生成深度学习模型的实现 DCGAN 论文: 作者:Alec Radford,Luke Metz,Soumith Chintala 代码(PyTorch): 由 码(闪电): 由 去做 DCGAN Pix2Pix 循环GAN SRGAN
2021-11-02 11:09:05 2.24MB pytorch generative-adversarial-network dcgan gans
1
PyTorch GAN :laptop:与 :laptop: = :red_heart: 此仓库包含各种GAN架构的PyTorch实现。目的是使初学者更容易开始玩和学习GAN。 我发现的所有存储库都掩盖了某些内容,例如将某些网络层中的偏向设置为False而没有解释为什么要做出某些设计决定。此仓库使每个设计决策透明。 目录 什么是GAN? GAN最初是由Ian Goodfellow等人提出的。在一份名为“的开创性论文中。 甘斯是一个框架,2个模型(通常为神经网络),称为发电机(G)和鉴别器(d),玩游戏极大极小彼此抵靠。生成器正在尝试学习真实数据的分布,这是我们通常感兴趣的网络。在游戏中,生成器的目的是欺骗鉴别器“思考”它生成的数据是真实的。另一方面,鉴别器的目的是正确地区分生成的(伪)图像和来自某些数据集(例如MNIST)的真实图像。 设置 git clone https://github.com/gordicaleksa/py
2021-11-01 11:04:11 65.9MB python machine-learning deep-learning pytorch
1