卷积神经网络CNN代码解析 卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,广泛应用于图像识别、自然语言处理、语音识别等领域。今天我们将对深度学习 matlab 包 DeepLearnToolbox-master 中的 CNN 部分进行代码解析。 一、卷积神经网络模型 卷积神经网络模型由多个卷积层和池化层组成。卷积层用于提取图像特征,而池化层用于降采样。该模型使用了 MNIST 数据集作为训练样本,每个样本特征为一个 28*28 的向量。 二、DeepLearnToolbox-master 中的 CNN 部分 DeepLearnToolbox-master 是一个深度学习 matlab 包,包含多种机器学习算法,包括卷积神经网络、深度信念网络、自动编码等。 CNN 部分是 DeepLearnToolbox-master 的一个重要组成部分,包含多个函数,用于实现卷积神经网络的训练和测试。 三、函数调用关系 DeepLearnToolbox-master 中的 CNN 部分的函数调用关系如下: * Test_example_CNN:测试例程,用于设置 CNN 的基本参数规格,包括卷积、降采样层的数量,卷积核的大小、降采样的降幅等。 * cnnsetup:初始化卷积核、偏置等参数。 * cnntrain:训练 CNN,将训练数据分成批量,然后调用 cnnff 完成训练的前向过程,cnnbp 计算并传递神经网络的 error,并计算梯度(权重的修改量),cnnapplygrads 把计算出来的梯度加到原始模型上去。 * cnntest:测试当前模型的准确率。 四、cnnsetup 函数 cnnsetup 函数用于初始化 CNN 的参数,包括设置各层的 mapsize 大小,初始化卷积层的卷积核、bias 等参数。卷积核的权重设置为:-1~1 之间的随机数/sqrt(6/(输入神经元数量+输出神经元数量))。 五、卷积神经网络的训练 卷积神经网络的训练过程包括数据预处理、模型初始化、训练、测试等步骤。在训练过程中,我们需要将数据转换为相应的格式,并归一化。然后,设置网络结构及训练参数,初始化网络,对数据进行批量训练,验证模型准确率,绘制均方误差曲线。 六、结论 本文对 DeepLearnToolbox-master 中的 CNN 部分进行了代码解析,介绍了卷积神经网络模型、函数调用关系、cnnsetup 函数和卷积神经网络的训练过程。卷积神经网络是深度学习领域中的一种重要模型,广泛应用于图像识别、自然语言处理、语音识别等领域。
2025-11-02 20:24:17 570KB
1
HiFormer:基于CNN和Transformer的医学图像分割方法 HiFormer是一种新颖的医学图像分割方法,它将卷积神经网络(CNN)和Transformer结合,以解决医学图像分割任务中存在的挑战性问题。该方法通过设计了两个多尺度特征表示使用的开创性Swin Transformer模块和基于CNN的编码器,来确保从上述两种表示中获得的全局和局部特征的精细融合。实验结果表明,HiFormer在计算复杂度、定量和定性结果方面优于其他基于CNN、基于变换器和混合方法的有效性。 医学图像分割是计算机视觉中的主要挑战之一,它提供了有关详细解剖所需区域的有价值的信息。这些信息可以极大地帮助医生描述损伤、监测疾病进展和评估适当治疗的需求。随着医学图像分析的日益使用,高精度和鲁棒性的分割变得越来越重要。 卷积神经网络(CNN)具有提取图像特征的能力,已被广泛用于不同的图像分割任务。然而,CNN模型在医学图像分割任务中的性能受到限制,因为它们只能在局部范围内捕获特征,而忽视了长距离依赖关系和全局上下文。 Transformer最初是为了解决这个问题而开发的,但它们无法捕获低级功能。与此相反,它表明,局部和全局功能是至关重要的密集预测,如分割在具有挑战性的上下文中。在本文中,我们提出了HiFormer,这是一种有效地桥接CNN和Transformer用于医学图像分割的新方法。 具体来说,我们设计了两个多尺度特征表示使用的开创性Swin Transformer模块和基于CNN的编码器。为了确保从上述两种表示中获得的全局和局部特征的精细融合。实验结果表明,HiFormer在计算复杂度、定量和定性结果方面优于其他基于CNN、基于变换器和混合方法的有效性。 在近期的研究中,已经开发了一些基于Transformer的方法来解决CNN在医学图像分割任务中的限制。例如,DeiT提出了一种有效的知识蒸馏训练方案,以克服视觉变换器需要大量数据来学习的困难。Swin Transformer和pyramid visionTransformer试图分别通过利用基于窗口的注意力和空间减少注意力来降低视觉变换器的计算复杂度。CrossViT提出了一种新颖的双分支Transformer架构,可提取多尺度上下文信息,并为图像分类提供更细粒度的特征表述。DS-TransUNet提出了一种双分支Swin Transformer,用于在编码器中捕获不同的语义尺度信息,以执行医学图像分割任务。HRViT将多分支高分辨率架构与视觉变换器连接起来,用于语义分割。 然而,这些方法有一些障碍,阻止他们获得更高的性能:1)它们不能在保持特征一致性的同时,捕获全局和局部特征;2)它们需要大量的数据来学习和训练。因此,我们提出了HiFormer,以解决这些问题,并提供了一种更好的医学图像分割方法。 在实验部分,我们在多个医学图像分割数据集上进行了实验,结果表明,HiFormer在计算复杂度、定量和定性结果方面优于其他基于CNN、基于变换器和混合方法的有效性。我们的代码在GitHub上公开,供其他研究者使用和改进。
1
文本分类识别系统Python,基于深度学习CNN卷积神经网络算法.文本分类系统,使用Python作为主要开发语言,通过TensorFlow搭建CNN卷积神经网络对十余种不同种类的文本数据集进行训练,最后得到一个h5格式的本地模型文件,然后采用Django开发网页界面
2025-10-15 21:04:05 2KB tensorflow tensorflow python 深度学习
1
使用Python实现一个CNN(卷积神经网络)图像分类算法,并且使用GUI实现图片选择和分类功能
2025-10-15 20:59:07 2.34MB python
1
图像识别技术是计算机视觉领域的重要组成部分,它通过分析图像中的内容,将视觉信息转换为计算机能够理解的数字化信息。本文将详细介绍基于卷积神经网络(CNN)的图像识别项目——猫狗分类训练模型的实战应用。 卷积神经网络(CNN)是一种深度学习算法,它能够有效地处理图像识别问题。CNN的核心思想是通过卷积层对图像进行特征提取,再通过池化层对特征进行降维,从而实现对图像内容的识别。CNN在图像分类、目标检测、语义分割等任务中取得了显著的成果,是目前图像识别领域的主流技术。 在本文介绍的项目中,我们的目标是训练一个能够识别和区分猫和狗图像的模型。该项目使用了大量的猫和狗的图像作为训练数据集。在数据预处理阶段,需要对图像进行归一化、大小调整等操作,以满足模型输入的要求。数据集通常会被分为训练集和测试集,训练集用于模型的训练,测试集则用于评估模型的性能。 项目的实际操作过程中,首先需要搭建CNN的网络结构,这包括定义多个卷积层、池化层以及全连接层。在训练过程中,通过前向传播和反向传播算法,不断调整网络中的参数,使得模型能够更好地拟合训练数据。训练完成后,模型需要在测试集上进行测试,以验证其对未见过的图像的识别能力。 此外,该项目还涉及到一些技术细节,比如过拟合的处理。在深度学习中,过拟合是指模型对训练数据学习得太好,以至于失去了泛化能力。为了解决这一问题,可以采用数据增强、dropout、正则化等策略。数据增强通过对训练图像进行旋转、缩放、剪裁等操作来增加数据多样性,dropout则是在训练过程中随机丢弃一部分神经元,以此来减少模型对特定训练样本的依赖。 值得一提的是,该项目的代码库被命名为“cnn-classification-dog-vs-cat-master”,从中可以推断出该项目是开源的,供社区成员学习和使用。开源项目对于推动技术的发展和普及具有重要作用,同时也便于研究人员和开发者之间的交流与合作。 在训练模型之后,还需要对模型进行优化和调参,以便在保证识别准确性的同时,提高模型的运行效率。这涉及到选择合适的优化器、调整学习率、使用不同的损失函数等。优化完成后,模型可以部署到实际的应用中,如智能安防系统、宠物识别应用等,从而实现图像识别技术的商业价值。 通过这个猫狗分类训练模型的项目实战,我们可以深入理解和掌握图像识别技术在计算机视觉中的应用,尤其是在深度学习框架下如何处理图像识别问题。此外,该项目也为我们提供了一个实践深度学习和计算机视觉技术的平台,使我们能够进一步探索和研究图像识别领域的新技术和新方法。
2025-10-15 20:37:16 13KB 图像分类 计算机视觉 深度学习
1
内容概要:文档主要介绍了食用油品质检测与分析的四种技术手段。一是食用油品种识别,通过高光谱图谱结合GLCM算法提取油品纹理特征,再运用GA-SVM模型进行分类,最终以主成分分析散点图和层序聚类图展示分类结果。二是食用油的掺假鉴别,采用SI-PLSR方法建立油茶籽油掺假量预测模型,通过掺假浓度可视化预测图像直观展示掺假程度。三是理化定量预测,利用PCR和PLSR算法建立酸价、过氧化值等理化指标的预测模型并展示预测结果图。四是转基因油品预测,通过对油光谱预处理后建模,以不同颜色油滴标识转基因与否。; 适合人群:食品科学领域研究人员、食用油品质检测技术人员及相关专业的高校师生。; 使用场景及目标:①帮助专业人员掌握食用油品质检测的前沿技术;②为科研教学提供案例参考,提升教学质量;③为实验室检测提供具体操作指导和技术支持。; 其他说明:文档中提到的技术手段均配有图示或动态演示,有助于更直观地理解各个步骤及最终结果。
1
内容概要:本文介绍了基于PyTorch框架的高光谱图像分类2D_CNN网络代码及其完整项目。该项目包含网络模型、训练代码、预测代码,并附带了Indian Pines数据集。文中详细解释了项目的背景、准备工作、网络模型的设计、训练和预测的具体步骤。通过卷积层、池化层和全连接层的组合,实现了高效的高光谱图像分类,经过10次迭代训练,准确率达到99%左右。 适合人群:对高光谱图像分类感兴趣的科研人员、学生以及有一定深度学习基础的技术开发者。 使用场景及目标:适用于需要快速上手并实现高光谱图像分类的研究和开发工作。目标是让使用者能够在短时间内掌握2D_CNN网络的工作原理,并应用于实际的高光谱图像分类任务中。 其他说明:项目代码简洁明了,附带的数据集和预训练模型可以立即运行,降低了入门门槛,提高了实验效率。
2025-10-10 13:12:46 887KB
1
基于一维CNN的轴承故障诊断迁移学习代码复现:从源域到目标域的特征提取与分布对齐实践,基于迁移学习的轴承故障诊断代码复现:一维CNN特征提取与JDA联合对齐的实现过程,top一区轴承诊断迁移学习代码复现 故障诊断代码 复现 首先使用一维的cnn对源域和目标域进行特征提取,域适应阶段:将源域和目标域作为cnn的输入得到特征,然后进行边缘概率分布对齐和条件概率分布对齐,也就是进行JDA联合对齐。 此域适应方法特别适合初学者了解迁移学习的基础知识,特别推荐,学生问价有优惠 ●数据预处理:1维数据 ●网络模型:1D-CNN-MMD-Coral ●数据集:西储大学CWRU ●准确率:99% ●网络框架:pytorch ●结果输出:损失曲线图、准确率曲线图、混淆矩阵、tsne图 ●使用对象:初学者 ,核心关键词: 一区轴承诊断; 迁移学习; 代码复现; 特征提取; 域适应; JDA联合对齐; 数据预处理; 1D-CNN-MMD-Coral; 西储大学CWRU数据集; 准确率; pytorch框架; 结果输出图示; 初学者。,复现一维CNN迁移学习轴承故障诊断代码:从基础到高级的深度学习之旅
2025-09-23 13:53:02 1.81MB
1
内容概要:本文介绍了基于MATLAB实现的Transformer-SVM组合模型在多特征分类预测中的应用。项目背景在于数据时代对高效分类预测的需求,特别是处理高维、多模态、多噪声数据的挑战。Transformer凭借自注意力机制捕捉全局信息,SVM则擅长高维空间分类,二者结合提升了多特征数据分类的准确性和鲁棒性。项目通过MATLAB实现数据预处理、Transformer特征提取、SVM分类、模型集成与优化、预测输出等模块,展示了在不同领域的广泛应用,如医学影像分析、金融风控、营销推荐、社交媒体分析及智能制造。; 适合人群:对机器学习和深度学习有一定了解,尤其是希望掌握多特征分类预测技术的研究人员和工程师。; 使用场景及目标:①适用于处理高维、多模态、多噪声数据的分类预测任务;②提高模型在复杂数据集上的分类精度和泛化能力;③应用于医学、金融、营销、社交、制造等多个领域,提供精准的数据分析和决策支持。; 阅读建议:本项目涉及Transformer和SVM的深度融合及其实现细节,建议读者具备一定的MATLAB编程基础和机器学习理论知识。在学习过程中,结合代码示例进行实践,关注特征提取与分类模块的设计,以及模型调优和集成学习的应用。
2025-09-22 20:05:59 35KB MATLAB Transformer 机器学习
1
内容概要:本文介绍了基于CWT-CNN-SVM的滚动轴承故障诊断模型及其Matlab代码实现。首先,通过连续小波变换(CWT),将原始振动信号转化为时频图,以便更好地观察和分析信号特性。接着,利用卷积神经网络(CNN)提取时频图中的特征,并通过支持向量机(SVM)进行多级分类任务,以提高诊断的准确性和鲁棒性。最后,使用t-SNE进行样本分布的可视化,帮助理解和验证模型的分类结果。整个流程包括数据预处理、CWT转换、CNN-SVM训练以及T-SNE可视化四个主要步骤。 适合人群:从事机械设备故障诊断的研究人员和技术人员,尤其是对滚动轴承故障诊断感兴趣的工程师。 使用场景及目标:适用于需要对滚动轴承进行故障诊断的实际应用场景,旨在通过先进的机器学习和信号处理技术,实现对滚动轴承故障的早期预警和精准判断,从而降低设备维护成本和减少停机时间。 其他说明:文中详细描述了每个步骤的技术细节和实现方法,并提供了具体的Matlab代码实现指南。未来研究方向包括进一步优化模型参数和改进模型结构,以提升诊断效果。
2025-09-22 19:29:02 332KB
1