<项目介绍> 基于Python+Django+PSO-LSTM电力负荷预测系统源码+文档说明 - 不懂运行,下载完可以私聊问,可远程教学 该资源内项目源码是个人的毕设,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 --------
2024-09-23 20:12:24 4.06MB python django 人工智能 lstm
1
基于CNN-LSTM模型的网络入侵检测方法,使用的是UNSW-NB15数据集,代码包含实验预处理,混淆矩阵输出,使用分成K折交叉验证,实验采用多分类,取得良好的效果。 Loss: 0.05813377723097801 Accuracy: 0.9769517183303833 Precision: 0.9889464676380157 Recall: 0.9685648381710052
2024-09-20 20:56:16 397KB lstm jupyter
1
Visio是一款功能强大的图表和矢量图形应用程序,它被广泛用于创建各种类型的图表,包括复杂的卷积神经网络(CNN)结构图。使用Visio绘制的CNN结构图模板,可以帮助研究人员、学生和专业人士更高效地设计和展示他们的神经网络模型。 该模板通常包含了一系列预定义的形状和符号,如卷积层、池化层、全连接层、激活函数等,这些元素可以直接拖拽到画布上使用。用户可以通过调整这些元素的大小、颜色和连接方式来定制自己的网络结构图。此外,模板可能还提供了一些辅助功能,比如自动布局、数据流方向指示和层次结构的清晰展示。 通过使用Visio的卷积神经网络结构图模板,用户可以节省大量手动绘制的时间,并确保图表的专业性和一致性。这不仅适用于学术报告和论文,也适用于项目演示和技术文档。然而,请注意,我不能提供实际的下载链接,但用户可以根据描述在网络上搜索并找到相应的Visio模板资源。
2024-09-19 09:06:35 75KB 卷积神经网络
1
CNN-LSTM-Attention基于卷积-长短期记忆神经网络结合注意力机制的数据分类预测 Matlab语言 程序已调试好,无需更改代码直接替换Excel即可运行 1.多特征输入,LSTM也可以换成GRU、BiLSTM,Matlab版本要在2020B及以上。 2.特点: [1]卷积神经网络 (CNN):捕捉数据中的局部模式和特征。 [2]长短期记忆网络 (LSTM):处理数据捕捉长期依赖关系。 [3]注意力机制:为模型提供了对关键信息的聚焦能力,从而提高预测的准确度。 3.直接替换Excel数据即可用,注释清晰,适合新手小白 4.附赠测试数据,输入格式如图3所示,可直接运行 5.仅包含模型代码 6.模型只是提供一个衡量数据集精度的方法,因此无法保证替换数据就一定得到您满意的结果
2024-09-12 10:58:49 171KB lstm 神经网络 matlab
1
CNN-GRU多变量回归预测(Matlab) 1.卷积门控循环单元多输入单输出回归预测,或多维数据拟合; 2.运行环境Matlab2020b; 3.多输入单输出,数据回归预测; 4.CNN_GRUNN.m为主文件,data为数据; 使用Matlab编写的CNN-GRU多变量回归预测程序,可用于多维数据拟合和预测。该程序的输入为多个变量,输出为单个变量的回归预测结果。主要文件为CNN_GRUNN.m,其中包含了需要处理的数据。 提取的 1. 卷积门控循环单元(Convolutional Gated Recurrent Unit,CNN-GRU):一种深度学习模型,结合了卷积神经网络(Convolutional Neural Network,CNN)和门控循环单元(Gated Recurrent Unit,GRU)的特性,用于处理时序数据和多维数据的回归预测或拟合任务。 卷积门控循环单元(CNN-GRU)是深度学习中的一种模型,用于处理具有时序关系或多维结构的数据。相比于传统的循环神经网络(Recurrent Neural Network,RNN),CNN-GRU在处理长期依赖关
2024-09-09 14:11:57 493KB matlab
1
保姆级 Keras 实现 Faster R-CNN 十四 Jupyter notebook 示例代码. 完成了 Faster R-CNN 训练和预测的功能. 是完整的代码, 具体可参考 https://blog.csdn.net/yx123919804/article/details/115053895
2024-08-23 17:16:01 120KB Faster-RCNN Keras Jupyternotebook
1
标题和描述中提到的"景区客流量预测"是一个与数据科学和机器学习相关的项目,目标是预测旅游景区的游客数量。LSTM(长短时记忆网络)是这个项目的关键技术,这是一类递归神经网络,特别适合处理序列数据,如时间序列分析中的历史数据预测。 在给出的文件列表中,我们可以看到以下内容: 1. **checkpoint**:这是一个在训练深度学习模型过程中保存权重和参数的文件,通常用于模型恢复或继续训练。 2. **九寨沟.csv**:这可能是一个包含九寨沟景区历史客流量数据的数据集,可能还包括日期、节假日信息、天气状况等影响游客量的因素。 3. **lstmmoxing.data-00000-of-00001**、**lstmmoxing.index**:这些文件可能是训练过程中产生的模型检查点数据,其中`.data`文件存储模型的权重,`.index`文件记录了权重的位置信息。 4. **预测1.png**:这可能是一个展示预测结果的图像,直观地显示出模型对景区客流量的预测情况。 5. **gru预测.py**、**lstm预测.py**、**bp预测.py**:这些都是Python脚本,可能包含了不同的模型实现,GRU(门控循环单元)是另一种递归神经网络,与LSTM类似但结构稍简;BP可能代表Backpropagation,即反向传播算法,这是训练神经网络的基础。 6. **数据分析.py**:这个脚本可能包含了数据预处理的步骤,如清洗、转换和特征工程,以便于输入到模型中。 7. **data_read.py**:此脚本可能负责读取和解析像`九寨沟.csv`这样的数据文件。 通过这些文件,我们可以推断出项目的工作流程: 1. **数据预处理**:使用`data_analysis.py`对`九寨沟.csv`中的数据进行清洗、转换和标准化,提取出对预测有用的特征。 2. **模型构建**:使用`lstm预测.py`、`gru预测.py`和`bp预测.py`中的代码构建LSTM、GRU或基本的反向传播神经网络模型。 3. **训练与优化**:模型在历史数据上进行训练,并可能通过调整超参数或使用不同的优化器来提高性能。 4. **模型保存**:训练过程中的最佳模型状态会被保存为`checkpoint`,以便后续使用或进一步优化。 5. **预测**:模型对未来的景区客流量进行预测,结果可能以可视化形式展示在`预测1.png`中。 6. **评估**:预测结果与实际数据进行对比,评估模型的准确性和可靠性。 这个项目不仅涉及到LSTM的使用,还可能涵盖了数据处理、模型选择、训练技巧和预测效果的评估等多个方面,是数据科学在旅游业应用的一个实例。
2024-08-22 16:45:42 333KB lstm
1
深度学习RNN(循环神经网络)是人工智能领域中一种重要的序列模型,尤其在自然语言处理、语音识别和时间序列预测等任务中表现出色。RNNs以其独特的结构,能够处理变长输入序列,并且能够在处理过程中保留历史信息,这使得它们在处理具有时间依赖性的数据时特别有效。 LSTM(长短期记忆网络)是RNN的一种变体,解决了传统RNN在处理长距离依赖时可能出现的梯度消失问题。LSTM通过引入门控机制(输入门、遗忘门和输出门)来控制信息流,从而更好地学习长期依赖性。LSTM在NLP中的应用包括机器翻译、情感分析、文本生成等;在音频处理中,它可以用于语音识别和音乐生成。 1. LSTM应用:这部分的论文可能涵盖了LSTM在不同领域的实际应用,比如文本分类、情感分析、机器翻译、语音识别、图像描述生成等。这些论文可能会详细阐述如何构建LSTM模型,优化方法,以及在特定任务上相比于其他模型的性能提升。 2. RNN应用:RNN的应用广泛,除了LSTM之外,还有GRU(门控循环单元)等变体。这部分的论文可能会探讨基本RNN模型在序列标注、语言建模、时间序列预测等任务上的应用,同时可能对比RNN和LSTM在性能和训练效率上的差异。 3. RNN综述:这部分论文可能会提供RNN的发展历程,关键概念的解释,以及与其它序列模型(如Transformer)的比较。它们可能会讨论RNN在解决梯度消失问题上的局限性,以及后来的改进策略,如双向RNN、堆叠RNN等。 4. LSTM综述:这部分论文将深入探讨LSTM的内部工作机制,包括其门控机制的数学原理,以及在不同任务中如何调整参数以优化性能。可能还会讨论一些高级主题,如多层LSTM、双向LSTM、以及LSTM在网络架构中的创新应用,如Attention机制的结合。 在毕业设计中,这些资源对于理解RNN和LSTM的工作原理,以及如何在实际项目中应用它们非常有价值。通过阅读这些经典论文,可以了解最新的研究进展,掌握模型优化技巧,并为自己的研究提供理论支持。无论是初学者还是资深研究人员,这个压缩包都能提供丰富的学习材料,有助于深化对深度学习中RNN和LSTM的理解。
2024-08-06 10:23:45 64.46MB 深度学习 毕业设计 lstm
1
DEAP(DEtection of Affect in Audiences using Physiological signals)数据集是研究情感识别领域的一个重要资源,尤其在利用脑电图(EEG)信号分析人类情绪反应时。这个数据集包含了40名参与者对32个不同音乐视频片段的情绪反应,涵盖了喜悦、愤怒、悲伤、平静四种基本情绪类别。研究人员可以通过分析这些EEG数据,结合其他生理指标如心率、皮肤电导等,来训练和评估情感识别模型。 CNN(卷积神经网络)和LSTM(长短时记忆网络)是两种广泛应用于深度学习领域的神经网络架构,特别适合处理时间和空间上的连续数据。在脑电情绪识别任务中,CNN通常用于捕捉EEG信号中的空间模式,因为它们能够自动学习特征,如不同脑区之间的连接模式。而LSTM则擅长捕捉时间序列数据的长期依赖性,这对于理解EEG信号随时间变化的情绪动态非常有用。 在使用DEAP数据集进行情绪识别时,首先需要预处理原始EEG数据,包括去除噪声、滤波以消除高频或低频干扰,以及标准化或归一化数据以减少个体差异。接着,可以将预处理后的EEG信号划分为合适的窗口大小,每个窗口对应一段连续的信号,然后用CNN提取每一窗口内的特征。LSTM可以接在CNN之后,对连续的特征窗口进行建模,以捕捉情绪变化的动态过程。 训练模型时,可以采用交叉验证策略,如k折交叉验证,来评估模型的泛化能力。损失函数通常选择多类交叉熵,优化器可以选择Adam或SGD。在模型设计上,可以尝试不同的CNN-LSTM组合,比如多层CNN提取特征后馈入单层或多层LSTM,或者在LSTM前后添加全连接层进行进一步的抽象和分类。 此外,为了提高模型性能,可以考虑集成学习,比如基于多个模型的投票或平均结果。同时,正则化技术如Dropout和Batch Normalization也能帮助防止过拟合,提高模型的稳定性和泛化能力。 在评估模型时,除了准确率之外,还应关注精确率、召回率、F1分数以及混淆矩阵,以全面理解模型在各个情绪类别的表现。同时,AUC-ROC曲线也是一个重要的评估指标,它衡量了模型区分不同情绪状态的能力。 DEAP数据集结合CNN和LSTM提供了研究脑电情绪识别的强大工具。通过不断调整网络结构、优化参数,以及利用各种技术提高模型性能,我们可以更深入地理解人的情感反应,并为实际应用如人机交互、心理健康监测等领域提供支持。
2024-07-28 16:55:03 27.42MB 数据集 lstm
1
基于遗传算法(GA)优化长短期记忆网络(GA-LSTM)的时间序列预测。 优化参数为学习率,隐藏层节点个数,正则化参数,要求2018及以上版本,matlab代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-07-27 16:14:12 28KB 网络 网络 matlab lstm
1