使用 C 语言实现复数矩阵的求逆,可以运行,使用 VS2012 软件编写。
2021-06-19 16:00:27 579KB 复数矩阵 求逆
1
复数矩阵行列式VB和C#计算程序 这是一个计算复数矩阵行列的VB和C#代码,需要的下载来看看哦
2021-06-19 12:40:50 39KB 复数矩阵 行列式
1
内容:1、实数矩阵加法以及 2、复数矩阵加法 GPU并行 CUDA代码 MATLAB Cmex混合编程。MATLAB CUDA C++
2021-05-27 09:27:59 19.8MB 矩阵加法 CUDA
1
复数矩阵的特征值分解,使用了GSL科学计算函数库,使得特征值分解时间大大减少。
2019-12-21 21:30:16 10.63MB 特征值分解 GSL函数库
1
Java复数矩阵库——JamPack,可用于简单的复数矩阵运算
2019-12-21 21:25:06 53KB 复数矩阵库
1
一个vc开发的复数矩阵用qr分解方法求解逆矩阵的V刹动态库源码,以在vc6平台调试通过,原始矩阵是4维的,可扩展
2019-12-21 21:12:39 4KB 复数矩阵 QR分解 逆矩阵
1
使用C代码编写的复数矩阵求逆的C代码。已经和matlab结果做出对比,无误
2019-12-21 21:10:28 1.18MB 复数矩阵求逆 C代码 高斯消去法
1
采用C++开发的复矩阵数学库,含复数类CMyComplex、矩阵类CMatrix、修正贝塞尔函数类等,可进行各种复数和复矩阵运算,具体包括:实矩阵求逆的全选主元高斯-约当法、复矩阵求逆的全选主元高斯-约当法、对称正定矩阵的求逆、托伯利兹矩阵求逆的埃兰特方法、求行列式值的全选主元高斯消去法 求矩阵秩的全选主元高斯消去法、对称正定矩阵的乔里斯基分解与行列式的求值、矩阵的三角分解 、一般实矩阵的QR分解、一般实矩阵的奇异值分解 、求广义逆的奇异值分解法、约化对称矩阵为对称三对角阵的豪斯荷尔德变换法、实对称三对角阵的全部特征值与特征向量的计算、约化一般实矩阵为赫申伯格矩阵的初等相似变换法、求赫申伯格矩阵全部特征值的QR方法、求实对称矩阵特征值与特征向量的雅可比法、求实对称矩阵特征值与特征向量的雅可比过关法等,内容十分丰富完善。
2019-12-21 20:07:52 6.39MB C++复数矩阵 数学库 Complex Matrix
1
Preface page xi Acknowledgments xiii Abbreviations xv Nomenclature xvii 1 Introduction 1 1.1 Introduction to the Book 1 1.2 Motivation for the Book 2 1.3 Brief Literature Summary 3 1.4 Brief Outline 5 2 Background Material 6 2.1 Introduction 6 2.2 Notation and Classification of Complex Variables and Functions 6 2.2.1 Complex-Valued Variables 7 2.2.2 Complex-Valued Functions 7 2.3 Analytic versus Non-Analytic Functions 8 2.4 Matrix-Related Definitions 12 2.5 Useful Manipulation Formulas 20 2.5.1 Moore-Penrose Inverse 23 2.5.2 Trace Operator 24 2.5.3 Kronecker and Hadamard Products 25 2.5.4 Complex Quadratic Forms 29 2.5.5 Results for Finding Generalized Matrix Derivatives 31 2.6 Exercises 38 3 Theory of Complex-Valued Matrix Derivatives 43 3.1 Introduction 43 3.2 Complex Differentials 44 3.2.1 Procedure for Finding Complex Differentials 46 3.2.2 Basic Complex Differential Properties 46 3.2.3 Results Used to Identify First- and Second-Order Derivatives 53 viii Contents 3.3 Derivative with Respect to Complex Matrices 55 3.3.1 Procedure for Finding Complex-Valued Matrix Derivatives 59 3.4 Fundamental Results on Complex-Valued Matrix Derivatives 60 3.4.1 Chain Rule 60 3.4.2 Scalar Real-Valued Functions 61 3.4.3 One Independent Input Matrix Variable 64 3.5 Exercises 65 4 Development of Complex-Valued Derivative Formulas 70 4.1 Introduction 70 4.2 Complex-Valued Derivatives of Scalar Functions 70 4.2.1 Complex-Valued Derivatives of f (z, z∗) 70 4.2.2 Complex-Valued Derivatives of f (z, z∗) 74 4.2.3 Complex-Valued Derivatives of f (Z, Z∗) 76 4.3 Complex-Valued Derivatives of Vector Functions 82 4.3.1 Complex-Valued Derivatives of f (z, z∗) 82 4.3.2 Complex-Valued Derivatives of f (z, z∗) 82 4.3.3 Complex-Valued Derivatives of f (Z, Z∗) 82 4.4 Complex-Valued Derivatives of Matrix Functions 84 4.4.1 Complex-Valued Derivatives of F(z, z∗) 84 4.4.2 Complex-Valued Derivatives of F(z, z∗) 85 4.4.3 Complex-Valued Derivatives of F(Z, Z∗) 86 4.5 Exercises 91 5 Complex Hessian Matric
2019-12-21 19:57:14 1.81MB 复数矩阵 矩阵求导 应用案例 deriv
1