This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.
2023-11-10 22:38:22 2.91MB Linear Algebra
1
线性代数经典又重要的知识,深入浅出。提高自己综合知识水平的珍品。对于信号处理算法的研究相当重要。。。。。
2023-09-05 00:20:35 3.95MB linear algebra
1
Classic algebra book.
2023-08-02 12:02:09 12.91MB Algebra
1
学习计算机理论需要代数,本书是抽象代数经典教材,作者阿廷,英文版
2023-07-20 14:42:34 5.29MB algebra
1
这是关于线性代数的电子书,高清,最新版本,经典著作,英文版
2023-06-10 21:33:39 7.36MB Elemen
1
经典教材,全英文, 线性代数及矩阵,大量例题练习,耶鲁大学出版社出品
2023-05-16 17:01:19 9.39MB 大学 教材 线性代数 矩阵
1
ModelingToolkit.jl:Julia中用于自动并行化科学机器学习(SciML)的建模框架。 用于集成符号的计算机代数系统,用于物理知识的机器学习和微分方程的自动转换
2023-04-02 15:23:28 172KB computer-algebra julia ode symbolic
1
Algebra, Topology, Differential Calculus, and Optimization TheoryFor Computer Science and Machine LearningJean Gallier and Jocelyn Quaintance Department of Computer and Information ScienceUniversity of Pennsylvania Philadelphia, PA 19104, USA e-mail: jean@cis.upenn.educ:copyright: Jean GallierAugust 2, 20192ContentsContents 31 Introduction 172 Groups, Rings, and Fields 19 2.1 Groups, Subgroups, Cosets . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Cyclic Groups . . . . . . . . . .
2023-03-15 20:47:53 19.85MB Papers Specs Decks Manuals
1
使用TensorLy的Python中的Tensor方法 该存储库包含一系列有关张量学习的教程和示例,以及使用在Python中的实现以及如何使用 , 和框架作为后端将张量方法与深度学习结合在一起。 安装 您将需要安装TensorLy的最新版本才能按照说明中的运行这些示例。 最简单的方法是克隆存储库: git clone https://github.com/tensorly/tensorly cd tensorly pip install -e . 然后只需克隆此存储库: git clone https://github.com/JeanKossaifi/tensorly_notebooks 您准备好出发了! 目录 1-张量基础 2-张量分解 塔克分解 3-张量回归 低秩张量回归 4-Tensor方法和MXNet后端的深度学习 通过梯度下降的塔克分解 张量回归网络 5-使用PyT
1
Linear algebra and its applications 麻省理工 线性代数公开课教材 可以配合视屏使用
2023-03-02 15:55:49 13MB 线性代数 机器学习 深度学习 数学
1