数据分析实例(共30张PPT).rar
2024-09-22 16:56:57 4.15MB 数据分析
1
数据集格式:Pascal VOC格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):184 标注数量(xml文件个数):184 标注数量(txt文件个数):184 标注类别数:1 标注类别名称:["Crocodile"] 每个类别标注的框数: Crocodile 框数 = 194 总框数=194 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注
2024-09-20 15:16:03 74.04MB 数据集
1
1、yolo格式标签行人跌倒数据集+ 8000张, yolo格式标签行人跌倒数据集+ 8000张, yolo格式标签行人跌倒数据集+ 8000张, yolo格式标签行人跌倒数据集+ 8000张, yolo格式标签行人跌倒数据集+ 8000张;类别名为falling, 2、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743
2024-09-18 14:31:57 782.01MB 数据集
1
包含类别如下: Abondance-奶牛,Afrikaner阿非利卡牛,Albera阿尔伯拉,AmericanMilkingDevon美国产奶德文郡,Angus,AnkoleWatusi,Aquitaine,Argentine,Armorican,Arouquesa,Asturian,AustralianBraford,Bargur,Barzona,Bazadaise,Belgian,Belmont,BlackHereford,BlondeAquitaine,Boran,Braford,Brahman,Brangus,Braunvieh,Brava,brownSwiss,Burlina,Busa,Cachena,Camargue,CanadianSpeckle,Canadienne,Canchim,Caracu,Casta,Charolais,Chianina,Corriente,Corsican,Criollo,Dangi,DanishRed,Deoni,Devon,Dexter,Dhannir,Droughtmaster,DutchBelted,EnglishLonghorn...
2024-09-11 15:41:07 144.43MB 数据集
1
我在训练yolov5 的时候,自己拍摄视频,提取帧,标记,划分训练集数据集,其中训练集1600张左右,验证集170张左右。标记使用的是labelimg,包含yoloTXT、Xml两种标注文件。可用于手势识别等。 剪刀、石头、布又称“猜丁壳”,是一个猜拳游戏。古老而简单,这个游戏的主要目的是为了解决争议,因为三者相互制约,因此不论平局几次,总会有胜负的时候。游戏规则中,石头克剪刀,剪刀克布,布克石头。 YOLO是当前目标检测领域性能最优算法的之一,几乎所有的人工智能和计算机视觉领域的开发者都需要用它来开发各行各业的应用。 YOLO的优势在于又快又准,可实现实时的目标检测。
2024-09-06 20:41:19 270.26MB 数据集 yolo 石头剪刀布 labelimg
1
分为真实场景和SD生成场景 真实场景: 数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):494 标注数量(xml文件个数):494 标注类别数:2 标注类别名称:["huapo","luoshi"] 每个类别标注的框数: huapo count = 183 luoshi count = 351 SD场景: 数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):497 标注数量(xml文件个数):497 标注类别数:1 标注类别名称:["luoshi"] 每个类别标注的框数: luoshi count = 514 数据集介绍地址:bilibili.com/video/BV1Ss4y1i7XZ
2024-08-25 15:12:00 54.1MB 目标检测 数据集
1
1、YOLO树叶分类目标检测数据集,真实场景的高质量图片数据,数据场景丰富。使用lableimg标注软件标注,标注框质量高,含voc(xml)、coco(json)和yolo(txt)三种格式标签,分别存放在不同文件夹下,可以直接用于YOLO系列的目标检测。 2、附赠YOLO环境搭建、训练案例教程和数据集划分脚本,可以根据需求自行划分训练集、验证集、测试集。 3、数据集详情展示和更多数据集下载:https://blog.csdn.net/m0_64879847/article/details/132301975
2024-08-11 13:59:56 27.93MB 目标检测 数据集 课程资源
1
该数据集包含3236张汽车图片,这些图片被归类到20个不同的类别中,每个类别代表一种特定类型的汽车。这种类型的数据集在机器学习和深度学习领域非常常见,尤其是用于图像识别和分类任务。以下是这个数据集相关的知识点详解: 1. 图像数据集:一个图像数据集是机器学习模型训练的基础,它由大量的图片组成,每个图片都有相应的标签(类别)。在这个案例中,数据集包含了3236张图片,这足以让模型学习并识别出不同类型的汽车。 2. 分类任务:这是一个多类别分类问题,因为有20个不同的汽车类别。模型的目标是学习如何将新图片正确地分配到这20个类别中的一个。 3. 图片尺寸:所有图片的尺寸都是224x224像素。这是预处理步骤的一部分,确保所有图片大小一致,有助于减少计算复杂性并使模型训练更高效。 4. 深度学习:这样的数据集常用于训练卷积神经网络(CNN),这是一种在图像识别任务中表现出色的深度学习模型。CNN通过学习图片中的特征来区分不同类别。 5. 数据预处理:在使用这个数据集之前,可能需要进行数据增强,如旋转、翻转、裁剪等,以增加模型的泛化能力,防止过拟合。此外,图片通常会归一化到0-1之间,以便神经网络能更好地处理。 6. 训练、验证与测试集:为了评估模型性能,数据通常会被划分为训练集、验证集和测试集。训练集用于训练模型,验证集用于调整模型参数(超参数调优),而测试集则在模型最终评估时使用,以评估其在未见过的数据上的表现。 7. 标签:虽然这里没有给出具体的标签信息,但每个图片应该对应一个类别标签,指示它属于哪一类汽车。在实际应用中,这些标签会以文本文件或元数据的形式存在于数据集中,供模型学习和评估。 8. 模型评估指标:常见的评估指标包括准确率、精确率、召回率和F1分数。对于多类别问题,混淆矩阵也是常用的评估工具,它能显示模型在每个类别上的表现。 9. GPU加速:由于图像处理和深度学习计算的复杂性,通常需要GPU进行加速。现代深度学习框架如TensorFlow和PyTorch都支持GPU运算,可以显著提高训练速度。 10. 软件工具:处理此类数据集通常需要编程语言如Python,以及相关的库如PIL(Python Imaging Library)用于图像处理,NumPy用于数组操作,以及TensorFlow或PyTorch进行深度学习模型的构建和训练。 这个汽车图片数据集提供了一个理想的平台,可以用来学习和实践深度学习中的图像分类技术,对于初学者和专业开发者来说都是有价值的资源。
2024-08-01 17:42:18 51.57MB
1
马颂德和张正友是机器视觉领域的大牛,他们的著作《计算机视觉》可以帮助视觉科研者们掌握这个领域的一些很有用的东西,是难得一见的好教材
2024-07-10 13:34:00 13.91MB 机器视觉领域的经典
1
针对当前煤矿带式输送机粘煤较多的现象,设计使用一种新型机清扫器,特征是在沿着带式输送机驱动滚筒切线的方向上,位于输送带的中间部位设置一级清扫器;在所述一级清扫器之后,位于输送带的整个宽度位置设置二级清扫器。本实用新型针对输送带中间部位易沾煤的情况,合理布置一级清扫器和二级清扫器,极大地提高了清扫效果,有利于维护巷道环境,提高煤矿生产效益。
2024-07-08 09:27:39 181KB 自动张紧
1