样本图参考:blog.csdn.net/2403_88102872/article/details/143498506,文件太大放服务器了,请先到资源详情查看然后下载 重要说明:数据集有部分是增强的,就是4张图片拼接成一张的,请查看图片预览,确认符合要求再下载 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):4629 标注数量(xml文件个数):4629 标注数量(txt文件个数):4629 标注类别数:4 标注类别名称:["Heavy Damage","Minor Damage","Moderate Damage","Undamage"]
2025-10-31 11:12:46 407B 数据集
1
yolov5/yolov8/yolo11/yolo目标检测数据集,人爬墙识别数据集及训练结果(含yolov8训练结果与模型),1016张标注好的数据集(2类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用 2个类别:没爬墙,在爬墙。 效果参考展示:https://blog.csdn.net/m0_37302966/article/details/151864777 更多资源下载:https://blog.csdn.net/m0_37302966/article/details/146555773
2025-10-30 17:10:49 122.32MB yolov5数据集 yolo数据集
1
在智慧农业领域,作物成熟度的精准判别是实现高效生产管理的核心环节。针对番茄这类规模化种植的果蔬作物,基于计算机视觉与机器学习的自动化检测技术正成为解决传统人工分拣效率低、主观性强等问题的关键方案。YOLO作为目标检测领域的主流算法,以其卓越的实时性与检测精度,为农业场景下的大规模图像数据处理提供了理想的技术框架。 本数据集聚焦番茄成熟度检测任务,包含5560张精细标注的图像,完整覆盖绿果(未成熟)、半熟(半成熟)、完熟(完全成熟)三个核心成熟阶段。标签体系精准定义了番茄的成熟状态,为YOLO模型的训练提供了高质量标注数据,确保模型能精确识别不同成熟阶段的视觉特征——绿果呈现均匀青绿色,半熟果实可见红绿斑驳的转色过渡,完熟果实则以鲜艳红色为主色调。 在农业生产实践中,成熟度检测模型的精准度直接影响采收时机决策与果实品质分级,对降低人工成本、减少采收损耗、提升商品果率具有重要意义。
2025-10-29 10:11:41 229.28MB 数据集 YOLO
1
重要说明:葡萄叶都是单个子叶,部分图片有增强,请认真查看下面样本图,确认符合要求再下载 样本图参考:https://blog.csdn.net/2403_88102872/article/details/143460673 温馨提示:文件太大放服务器,请先到资源详情查看然后下载 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):5015 标注数量(xml文件个数):5015 标注数量(txt文件个数):5015 标注类别数:4 标注类别名称:["anthracnose","black_rot","healthy","mildiyo_owny_Mildew_uzum"]
2025-10-27 21:15:07 407B 数据集
1
本数据集名为“3D打印缺陷检测数据集”,采用VOC+YOLO格式,共包含5864张图像,分为三个类别,用于3D打印缺陷的视觉检测。数据集由1/3的原始图像和2/3的增强图像组成,所有图像均配有详细的标注信息。标注工具有labelImg,其中标注类别包括“spaghetti”、“stringing”和“zits”,分别对应3D打印中的不同缺陷类型。 在数据集格式方面,遵循Pascal VOC格式和YOLO格式标准,包含了5864张jpg格式的图片,每个图片均配有相应的VOC格式xml文件和YOLO格式txt文件。xml文件中记录了图片的元数据和标注信息,而txt文件则以YOLO格式提供了标注框的详细坐标和类别信息。标注信息准确地反映了图像中存在的缺陷区域。 具体来说,每个类别在数据集中标注的框数为:“spaghetti”框数为9339,“stringing”框数为2353,“zits”框数为30427,总标注框数达到了42119。这为训练高精度的3D打印缺陷检测模型提供了丰富的数据支持。 值得一提的是,类别名称在YOLO格式中的顺序并不与VOC格式中的名称顺序相对应,而是以labels文件夹中的classes.txt文件为准。这样的设计可能是为了满足不同标注系统之间的兼容性和切换需要。使用该数据集的用户需要根据此文件确定类别与编号之间的对应关系。 在使用数据集时,用户需要理解数据集并不提供任何关于模型训练效果或权重文件精度的保证。这表明用户在使用数据集进行模型训练时,需要自行验证模型的性能,并对结果负责。 该数据集为3D打印缺陷检测提供了大量经过精心标注的图像,格式规范且详尽,支持了VOC和YOLO两种主流标注格式,为研究者和开发者提供了便利,特别是在图像识别和机器学习领域的应用前景广阔。
2025-10-27 14:42:10 2.12MB 数据集
1
高德天气对应的68张天气照片
2025-10-23 11:24:57 537KB
1
垃圾分类作为一个全球性的问题,对于环境保护和可持续发展起着至关重要的作用。在这个数据集中,包含了4000余张图片,详细展示了四种主要垃圾类别:有害垃圾、可回收垃圾、厨余垃圾和其他垃圾。这些图片不仅涵盖了日常生活中的常见垃圾,还包括了一些不常见的项目,如小米电池,这类数据的加入极大地丰富了垃圾分类模型的训练素材,提高了模型的泛化能力。 有害垃圾通常指的是对人类健康或者环境有害的废弃物,比如废电池、过期药品、油漆桶等。这类垃圾需要特别处理,以避免对人类健康和生态系统造成危害。可回收垃圾指的是那些可以重新加工利用的废弃物,例如纸张、塑料、金属和玻璃容器等。厨余垃圾主要来自厨房,包括食物残渣、果皮、蔬菜叶等有机物。其他垃圾则是指既不属于上述类别,又不能回收利用的废弃物。 该数据集可以用于训练和测试各种机器学习模型,尤其是基于深度学习的目标检测算法,如YOLO(You Only Look Once)。YOLO算法是一种高效的目标检测方法,通过在图像中直接预测物体的类别和位置,可以快速准确地识别出图像中的垃圾种类。对于2025工程实践与创新能力大赛的参赛者来说,这个数据集是不可多得的资源,它不仅可以帮助参赛者在比赛中脱颖而出,还能在实际应用中推进垃圾分类的自动化和智能化水平。 数据集的文件结构相对简单,包含两个主要部分:labels和images。其中,images文件夹中存放了所有的图片文件,而labels文件夹则包含了与图片对应的标注文件,标注文件通常包含了垃圾的类别和边界框的坐标等信息,这些信息对于训练机器学习模型至关重要。 在处理这个数据集时,研究者需要对每张图片进行详细的标注,确保分类的准确性。对于图像中可能出现的垃圾,研究者不仅需要识别其种类,还需要精确地标注出其在图像中的位置。这样的工作不仅需要人工完成,而且需要一定的专业知识,以确保标注的准确性。完成后,这些数据可以被用来训练模型,使其能够自动识别和分类垃圾。 此外,数据集的创建和维护是一个持续的过程。随着垃圾分类标准的变化和新型垃圾的出现,数据集也需要不断更新和扩充。因此,对于那些希望在垃圾分类领域有所作为的研究者和开发者来说,这个数据集是他们宝贵的实验材料,有助于他们开发出更加高效、智能的垃圾分类系统。 这个垃圾分类数据集不仅在内容上具有多样性,涵盖了多种垃圾类型,包括一些不常见的项目,而且在应用上也非常广泛,适用于各种机器学习和深度学习的研究与实践。它为垃圾分类的自动化和智能化提供了有力的支持,对于促进环境保护、实现可持续发展具有重要的意义。
2025-10-22 10:20:24 316.39MB yolo 垃圾分类
1
样本图:blog.csdn.net/FL1623863129/article/details/144472567 文件放服务器下载,请务必到电脑端资源预览或者资源详情查看然后下载 数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件) 图片数量(jpg文件个数):2662 标注数量(json文件个数):2662 标注类别数:2 标注类别名称:["pupil","iris"] 每个类别标注的框数: pupil count = 2660 iris count = 2666 使用标注工具:labelme=5.5.0 标注规则:对类别进行画多边形框polygon 重要说明:可以将数据集用labelme打开编辑,json数据集需自己转成mask或者yolo格式或者coco格式作语义分割或者实例分割 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注
2025-10-21 15:06:11 407B 数据集
1
在当今数字化的信息时代,网络已经成为我们获取和分享信息的主要渠道之一。在浏览网页的过程中,我们经常会遇到一些精美或者有用的图片,希望能够下载保存下来。然而,传统的手动保存方式效率低下,尤其是当涉及到大量图片时,会显得尤为繁琐。为了提升效率,一款名为“网页图片保存能手”的软件应运而生,它的出现,无疑为用户快速批量保存网页上的多张图片带来了极大的便利。 “网页图片保存能手 (快速批量保存网页上的多张图片) 8.8 绿色版”是一款具有高效实用性的工具,无需安装即可使用。对于常常需要从网上搜集素材的设计师、研究员或是对特定图片有兴趣的收藏者来说,这款软件提供了一种快捷的方式,让批量下载图片成为可能。 软件的核心功能在于其智能识别和批量处理技术。使用该软件时,用户只需简单地输入网页URL或通过拖放网页链接的方式,它便能自动识别网页中所有的图片链接。这一功能极大地简化了下载流程,用户无需再逐个右键点击图片选择“图片另存为”,从而节省了大量时间和精力。 除了基本的批量下载功能,软件还允许用户自定义保存图片的类型和尺寸,如JPEG、PNG等格式,以及是否需要高清大图。用户可以根据自己的需求,选择最适合的图片格式和清晰度进行下载。此外,该软件还提供了过滤功能,用户可以设定规则排除广告图片或者其他不感兴趣的图片,仅保存所需内容,这样的智能筛选功能极大地提升了用户的使用体验。 软件的高级特性还包括按目录保存图片的功能。用户可以自行设定保存图片的文件夹结构,使得大量图片的管理变得井井有条,方便日后查阅。无论是用于个人收藏,还是在工作中作为设计素材,亦或是作为研究素材,用户都能通过“网页图片保存能手”快速定位并使用所需图片。 隐私和安全性是任何软件使用中都不可忽视的问题。为此,8.8绿色版特别关注了用户的隐私保护。在批量下载的过程中,软件不会保存任何个人数据,确保用户的下载行为不会被追踪,有效地保护了用户的隐私安全。绿色版软件的便携性意味着它不会在系统中留下任何冗余文件,因此不会影响计算机的性能,用户可以随时在任何一台电脑上使用,无需担心软件安装带来的负担。 “网页图片保存能手 (快速批量保存网页上的多张图片) 8.8 绿色版”已经成为众多互联网用户的一项理想工具。它简化了图片下载的过程,提高了效率,同时又保证了操作的简便性和安全性。对于那些经常需要进行网络图片搜集的用户来说,这款软件无疑是一个高效管理图片资源的好帮手。配合压缩包中的"picsaver88"文件,用户只需解压并运行,即可立即体验到高效图片管理带来的便捷,开启高效图片管理的新篇章。
2025-10-20 11:44:32 1.12MB 网页图片保存能手
1
猫行为检测数据集是一种专门用于训练和测试计算机视觉算法的目标检测数据集。该数据集包含了5997张图片,这些图片均为jpg格式,且附有精确的标注信息。标注工作遵循了Pascal VOC格式和YOLO格式的规范,其中不包含分割路径的txt文件,仅包含jpg图片以及对应的VOC格式xml文件和YOLO格式txt文件。每张图片都经过了精确的手动标注,以确保训练出来的模型能够准确识别图片中猫的不同行为。 该数据集的标注信息包括了五种类别的标签,分别是"belly"(匍匐)、"fight"(打闹)、"play"(玩耍)、"stretch"(伸展身体)以及"yawn"(打哈欠)。每个类别都对应有相应的矩形框标注,用以指示图片中猫的具体行为动作区域。具体到每个类别的框数分别为:belly有1193个框、fight有768个框、play有1393个框、stretch有1322个框、yawn有1338个框,总计框数达到了6014个。这些标注是使用labelImg工具进行的,且每个矩形框都准确地对应了猫的行为动作。 数据集的标注工作严格遵守了相应的规则,即对每一种猫的行为类别都进行了画矩形框的操作。这使得使用该数据集训练出来的目标检测模型能够准确地识别和定位图片中猫的行为状态。此外,数据集的制作方还提供了图片预览和标注例子,以便用户更好地理解数据集的具体内容和使用方法。 值得注意的是,本数据集不包含任何针对训练模型的精度保证,也不包含任何模型或权重文件,它仅仅是一个带有精确标注的猫行为图片集合。数据集的使用者在使用过程中应当自行确保训练模型的精度和准确性,同时也要理解该数据集仅提供准确且合理的标注图片,使用者应对此有充分的认知。 通过使用这样的数据集,研究者和开发者可以训练出能够识别猫的不同行为的智能系统。这不仅对宠物行为研究有重大意义,对于开发宠物监控设备、提升智能宠物陪伴质量以及在人工智能领域进行深度学习模型开发等方面都有着重要价值。由于数据集的标注质量和丰富度较高,它可以显著提高目标检测模型的性能,特别是在处理与猫相关行为识别任务时。此外,使用本数据集进行训练和测试,可以帮助开发者获取更多关于如何改进算法和优化模型结构的见解,从而推动目标检测技术的进步。
2025-10-20 00:06:08 1.9MB 数据集
1