ISO 34502-2022 道路车辆 - 自动驾驶系统的测试场景 - 基于场景的安全评估框架(中文版)
2024-08-23 16:18:18 8.2MB 自动驾驶
1
车辆路径问题(Vehicle Routing Problem, VRP)是运筹学中的一个重要研究领域,它涉及到如何在满足特定约束条件下,如车辆容量、行驶距离等,最有效地规划一系列配送点的访问路径。CVRP( Capacitated Vehicle Routing Problem)是VRP的一个变种,其中考虑了车辆的载货能力限制。在这个问题中,目标是找到最小化总行驶距离的路线方案,同时确保每辆车的载货量不超过其容量。 "Christofides&Eilon Set-E(1969)" 是一个经典的数据集,用于测试和评估CVRP的解决方案。这个数据集是由两位学者,Nicos Christofides和Yehuda Eilon,在1969年提出的。他们对这个问题进行了深入研究,并提出了相关的算法和解决方案,为后续的研究提供了基准。 数据文件的命名遵循了一种特定的格式:“E-n32-k5”,其中: - "E" 表示这是Christofides和Eilon的数据集。 - "n" 后面的数字表示问题中的节点数量,即需要服务的客户点或配送点的数量。 - "k" 后面的数字代表问题允许的最大车辆数。这意味着至少需要k辆车辆来完成所有的配送任务。 这些数据集通常包含每个节点的位置信息(如坐标),以及每个节点的需求量(即货物量)。通过这些数据,我们可以构建出问题的实例,然后运用不同的算法,如贪心算法、遗传算法、模拟退火算法或者现代的深度学习方法,来寻找最优解。 在解决CVRP时,常常会用到Christofides算法,这是一种混合整数线性规划(MILP)的近似算法,它结合了图的最小生成树和最小费用最大流的思想,可以保证找到的解不劣于问题最优解的3/2倍。Eilon算法可能指的是Yehuda Eilon提出的一些早期启发式算法,它们旨在快速找到可行的解决方案,尽管可能不是全局最优解。 在实际应用中,CVRP问题广泛存在于物流配送、城市交通规划、垃圾收集等领域。通过对Christofides&Eilon Set-E-1969数据集的研究,我们可以更好地理解CVRP的复杂性,检验各种算法的性能,并进一步优化物流系统的效率。这个数据集不仅对于学术研究有价值,也是优化实践中不可或缺的工具。
2024-08-20 10:34:05 5KB 车辆路径问题 CVRP
1
非线性三自由度车辆动力学模型,通常被称为“魔术轮胎公式”(Magic Formula),是汽车动力学领域中的一种重要理论模型。这个模型基于车辆在行驶过程中受到的各种力和力矩,包括轮胎与路面的相互作用,来描述车辆在三个自由度上的运动:横向、纵向和侧向。在MATLAB/Simulink环境中构建这样的模型,可以进行仿真分析,以理解车辆动态行为并优化其性能。 我们需要理解模型的基本构成。三自由度模型通常包括以下组件: 1. **车辆质心运动**:车辆在纵向(前进/后退)和横向(左右)的移动,以及围绕垂直轴的滚动。这些运动由车辆的质量、加速度和外力(如引擎牵引力、空气阻力、重力等)决定。 2. **轮胎模型**:魔术轮胎公式是描述轮胎与路面交互的关键。它包括轮胎的侧偏角、滑移率和负载变化对抓地力的影响。这种模型复杂且非线性,因为它考虑了轮胎橡胶的弹性、变形以及与路面的接触状态。 3. **悬挂系统**:车辆的悬挂系统影响着车辆的稳定性。它负责缓冲路面不平带来的冲击,并保持车身稳定。在模型中,悬挂的刚度、阻尼和位移会影响车辆的垂直运动。 4. **转向系统**:转向系统决定了车辆如何根据驾驶员输入改变方向。在三自由度模型中,转向角度会影响轮胎的侧偏角,进而影响车辆的侧向运动。 在MATLAB/Simulink中建立这样的模型,需要完成以下步骤: 1. **定义车辆参数**:设定车辆的质量、几何尺寸、悬挂特性、轮胎参数等。 2. **创建子系统模块**:为车辆质心运动、轮胎模型、悬挂系统和转向系统分别创建模块,每个模块内部实现对应的物理关系。 3. **连接模块**:将这些子系统模块通过信号连接起来,形成完整的车辆动力学模型。例如,驾驶员输入(如方向盘角度)会驱动转向系统模块,其输出再影响轮胎模型和车辆质心运动。 4. **仿真设置**:配置仿真时间、步长等参数,以确保结果的精度和稳定性。 5. **运行仿真**:执行模型并观察车辆在不同条件下的动态响应,如速度、加速度、轮胎力等。 6. **结果分析**:利用MATLAB的工具箱进行数据分析,理解车辆行为并可能调整参数以优化性能。 通过这个模型,工程师可以研究各种驾驶场景,比如急转弯、紧急刹车、高速行驶等,从而改进车辆的操控性和安全性。此外,该模型还可以用于开发车辆控制系统,如电子稳定程序(ESP)或防抱死制动系统(ABS)。 在实际应用中,非线性三自由度车辆动力学模型能够提供比简化模型更准确的预测,但计算量较大。因此,为了平衡精确度和计算效率,有时会采用线性化或简化版本的模型。然而,对于复杂的车辆行为分析和控制系统的开发,非线性模型仍然是不可或缺的工具。
2024-08-09 13:15:30 1.03MB matlab
1
深入分析了基于动态车辆模型的百度Apollo平台上的线性二次调节器(LQR)和模型预测控制(MPC)横向控制算法。通过对这两种算法的比较研究,揭示了它们在处理车辆横向控制问题时的性能差异和适用场景。文章提供了详细的算法原理、仿真结果以及在实际车辆上的测试数据,为自动驾驶车辆的横向控制提供了有价值的参考。 适用人群: 本研究适合自动驾驶技术、控制理论、车辆工程等领域的专业人士,以及对智能车辆控制和自动驾驶系统设计感兴趣的学生和研究人员。 使用场景: 研究成果可以应用于自动驾驶车辆的横向控制策略设计,提高车辆的行驶稳定性和安全性,同时为自动驾驶系统的进一步优化提供理论依据。 目标: 旨在评估和优化自动驾驶车辆的横向控制算法,推动自动驾驶技术的发展,增强智能交通系统的安全性和可靠性。 关键词标签: 动态车辆模型 百度Apollo LQR MPC横向控制
2024-07-18 14:50:33 901KB 毕业设计 MPC
1
欧洲经济委员会汽车标准法规中文译本有关M、N和O类车辆制动认证的统一规定
2024-07-06 21:35:56 802KB
1
ISO 11898-2 道路车辆-控制器局域网(CAN)
2024-07-04 17:25:02 1.69MB
1
OpenCV和YOLOv8实时车速检测+车辆检测跟踪 OpenCV和YOLOv8实时车速检测+车辆检测跟踪 车辆检测器 这是一个交通监控系统的项目。 使用OpenCV和YOLOv8实现如下功能,实时车辆检测、车辆跟踪、实时车速检测,以及检测车辆是否超速。 跟踪代码如下,赋予每个目标唯一ID,避免重复计算。 OpenCV和YOLOv8实时车速检测+车辆检测跟踪 OpenCV和YOLOv8实时车速检测+车辆检测跟踪 OpenCV和YOLOv8实时车速检测+车辆检测跟踪 OpenCV和YOLOv8实时车速检测+车辆检测跟踪 OpenCV和YOLOv8实时车速检测+车辆检测跟踪 OpenCV和YOLOv8实时车速检测+车辆检测跟踪 OpenCV和YOLOv8实时车速检测+车辆检测跟踪 OpenCV和YOLOv8实时车速检测+车辆检测跟踪 OpenCV和YOLOv8实时车速检测+车辆检测跟踪 OpenCV和YOLOv8实时车速检测+车辆检测跟踪 OpenCV和YOLOv8实时车速检测+车辆检测跟踪 OpenCV和YOLOv8实时车速检测+车辆检测跟踪 OpenCV和YOLOv8实时车速检测+车辆
2024-07-02 21:10:40 87.91MB opencv 深度学习 计算机视觉 车辆检测
1
基于DP动态规划的混合动力汽车,P2构型 1.车辆数据来源advisor。 2.电池SOC为电量维持型策略。 3.全程序包含逆向迭代和正向寻优过程。 4.DP可为后续mpc提供参考,也可将数据提取作为神经网络训练和规则作为参考。
2024-06-28 00:09:18 305KB 动态规划 神经网络
1
JT∕T 1076-2016 道路运输车辆卫星定位系统 车载视频终端技术要求
2024-06-25 15:21:03 4.06MB
1
项目介绍:随着人们生活水平的提高,科技的不断进步,智能驾驶技术逐渐受到了研究者们的广泛研究和关注。先进驾驶辅助系统(Advanced Driver Assistance System,简称ADAS)是智能驾驶技术的一个分支,即通过某种形式的传感器了解周围的环境,以协助驾驶员操作(辅助司机)或完全控制车辆(实现自动化) , 达到提高车辆安全驾驶的目的。车道线检测作为ADAS的重要组成部分,能够为系统确定车辆所在车道位置,并提供车道偏离预警决策依据。目前主要通过在车内安装摄像头,利用图像处理算法实时获取视频图像进行车道线检测,但现实行车环境复杂,比如存在视角遮挡、道路阴影、道路裂痕以及邻近车辆压线干扰等情况,以至于车道线不易提取且容易造成误检、漏检,因此如何实时、准确地检测出车道线具有重要的研究意义。 本代码通过构造一个单目相机、生成鸟瞰图、转为灰度、二值化、检测ROI等。 ———————————————— 版权声明:本文为CSDN博主「白卷W」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/qq_6
2024-06-23 13:22:00 84.45MB matlab
1