随机测试有很大的优势,因为输入信号是随机的! 因此不需要开发测试用例。 特别是在基于模型的测试框架中,有一个作为参考和操作代码(C 代码或任何其他实现)的需求模型(Simulink 模型)。 可以将相同的随机信号注入模型和代码中,并且可以调试任何故障。 可以使用任意数量的随机信号进行测试,直到发现错误或对其模型和代码充满信心。 持久性算法的随机测试示例可以在以下位置找到: http://www.mathworks.in/matlabcentral/fileexchange/39720-safety-critical-control-elements-examples 此提交包含几个函数来生成随机布尔信号、正弦波、正弦扫描和完全随机的波形组合。 还有噪声注入脚本,可插入随机噪声信号和输入信号的随机区域。 有关函数使用的示例,请参阅提交的文件 Sample1.m。
2024-05-22 12:04:25 6KB matlab
1
Lambda 算法是 Hea 的新版本
2024-04-28 17:04:07 294KB matlab
1
在雷达系统当中,跟踪的应用种类很多,包括但不限于`目标定位、自主导航、天气预测、空中交通管制和军事应用`等等,那么**如何获得更加准确的关于目标数据**就成为一个至关重要的问题。,`跟踪滤波器`为一种较好的方式,跟踪滤波器的**主要目的**就是`在充满不确定性的情况下,获得更为精准的目标的位置信息、速度信息、加速度信息等`,其中的alpha-beta滤波器为最基础的一种用于简单目标跟踪滤波的滤波器类型,了解此种滤波器对于后续的卡尔曼滤波器具有一定的帮助,本程序对其进行了MATLAB仿真,程序正确,结果较好,大家可以自行下载查看学习
1
1. Matlab实现粒子群优化算法优化BP神经网络的数据分类预测(完整源码和数据) 2. 多变量输入,单变量输出(类别),数据分类预测 3. 评价指标包括:准确率 和 混淆矩阵 4. 包括拟合效果图 和 混淆矩阵 5. Excel数据,要求 Matlab 2018B及以上版本
2024-04-15 09:42:39 74KB 机器学习 神经网络 粒子群算法 Matlab
1
应用于函数寻优问题
2024-04-14 21:29:38 1KB matlab 模拟退火算法
1
麻雀搜索算法(Sparrow Search Algorithm, SSA)是一种新型的群智能优化算法,在2020年提出,主要是受麻雀的觅食行为和反捕食行为的启发。在麻雀觅食的过程中,分为发现者(探索者)和加入者(追随者),发现者在种群中负责寻找食物并为整个麻雀种群提供觅食区域和方向,而加入者则是利用发现者来获取食物。为了获得食物,麻雀通常可以采用发现者和加入者这两种行为策略进行觅食。种群中的个体会监视群体中其它个体的行为,并且该种群中的攻击者会与高摄取量的同伴争夺食物资源,以提高自己的捕食率。此外,当麻雀种群意识到危险时会做出反捕食行为。
2024-04-10 16:51:04 2KB matlab
1
1. Matlab实现粒子群优化算法优化BP神经网络的数据回归预测(完整源码和数据) 2. 多变量输入,单变量输出,数据回归预测 3. 评价指标包括:R2、MAE、MSE、RMSE 4. 包括拟合效果图和散点图 5. Excel数据,暂无版本限制,推荐2018B及以上版本
2024-04-08 19:42:21 15KB 机器学习 神经网络 粒子群算法 Matlab
1
适用于样本不均衡的数据,可提高模型的性能。
2024-03-22 21:37:44 3KB matlab
1
利用MATLAB GUI设计平台,设计多算法雷达一维恒虚警检测CFAR可视化界面,通过选择噪声类型、目标类型、算法类型,手动输入相关参数,可视化显示噪声波形与目标检测的回波-检测门限波形图。运行cfar.m即可调用GUI进行参数输入输出。 恒虚警检测技术(CFAR)是指雷达系统在保持虚警概率恒定条件下对接收机输出的信号与噪声作判别以确定目标信号是否存在的技术。 前提:由于接收机输出端中肯定存有噪声(包括大气噪声、人为噪声、内部噪声和杂波等),而信号一般是叠加在噪声上的。这就需要在接收机输出的噪声或信号加噪声条件下,采用检测技术判别是否有目标信号。 误差概率:任何形式的判决必然存在着两种误差概率:发现概率和虚警概率。当接收机输出端存在目标回波信号,而判决时判为有目标的概率为Pd,判为无目标的概率为1-Pad。当接收机输出端只有噪声时,而判为有目标的概率为Pfa。由于噪声是随机变量,其特征可用概率密度函数表示,因此信号加噪声也是一随机变量 具体过程:恒虚警检测器首先对输入的噪声进行处理后确定一个门限,将此门限与输入端信号相比,如输入端信号超过了此
2024-03-10 14:52:28 102KB matlab
1