故障诊断,时域特征提取,包含有量纲参数和无量纲参数,一共17个特征参数值;频域特征提取,一共3个特征参数值;时频域特征提取,一共18个特征参数值;所有matlab程序代码均有详细注解说明,直接代入原始数据运行即可得到结果。
2024-03-24 20:15:03 2.01MB matlab 故障诊断 特征提取
1
CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-03-23 11:33:33 7.87MB matlab
1
基于AUTOSAR的汽车故障诊断系统的设计与实现
2024-03-22 21:28:22 2.15MB AutoSAR
1
PS48240/20智能高频开关电源系统由交流配电部分、HD4820-5型高频开关电源整流模块、PSM-15型监控模块、直流配电部分等构成。为适应现代通信电源的要求,该系统采用了模块化设计,局部的或单元的故障一般不会扩散影响到全局。通信电源系统故障分为一般性故障和紧急故障,一般性故障是指交流防雷器雷击损坏、通信中断、单个模块无输出、监控模块损坏等不会影响通信安全的故障,紧急故障是指交流采样与控制板损坏而导致交流停电、直流采样和监控电路损坏致使直流负载掉电等影响通信安全的故障。
2024-03-03 20:42:34 29KB 职场管理
1
刮板输送机是煤矿井下重要的开采设备之一,简要分析了现阶段刮板输送机的故障诊断现状,针对刮板输送机故障种类繁多,相互影响大且不易诊断的问题,根据多传感器数据融合理论,提出了RBF和模糊积分相结合的刮板输送机故障诊断数据融合方法。在特征级采用RBF,可以对同类传感器采集的数据进行快速学习和收敛,得到同源数据对每一类故障的模糊测度,以便在高维空间内进行同源数据的线性可分。决策级采用模糊积分理论利用该模糊测度通过模糊积分计算,获得刮板输送机故障信息的预测结果,该方法具有较好的容错性,简化了冗余信息,降低了故障相互影响的关联性。刮板输送机减速器电机故障的诊断研究表明,文中所提出的方法有助于克服故障类型的不确定性,在整体上确保故障数据的完备性,正确地判定故障的类型,提高了故障诊断的准确性。
2024-02-26 15:20:55 274KB 数据融合 模糊积分 刮板输送机
1
带式输送机传动滚筒轴承发生故障时,特别是早期故障,其振动信号中隐含的脉冲故障信息很微弱,且常被淹没在强烈的噪音中,直接做频谱分析或包络分析,很难提取其故障特征。最小熵解卷积(Minimum Entropy Deconvolution,MED)通过最优滤波器对轴承微弱故障信号进行最优滤波,提高了信号的信噪比,然后对滤波后的信号进行包络解调分析,能够提取出信号中隐含的故障特征。将该方法应用于带式输送机传动滚筒中的滚动轴承故障诊断,成功提取出了轴承内圈的早期微弱点蚀故障特征。对FIR滤波器阶数L的选择进行了分析,以确保最优的MED解卷积效果。仿真与应用验证了最小熵解卷积方法在滚动轴承故障诊断的有效性和优点。
1
美国凯斯西储大学(CWRU)数据集:文件名称为数据集类型缩写,便于文件检索
2024-02-08 17:03:44 234.44MB 故障诊断 数据集 深度学习 机器学习
1
Maltab实现CNN卷积神经网络故障诊断(代码完整,可直接运行,适合2018及以上) 卷积神经网络(convolutional neural network)是具有局部连接、权重共享等特性的深层前馈神经网络,最早主要是用来处理图像信息。 相比于全连接前馈神经网络,卷积神经网络有三个结构上的特性:局部连接、权重共享以及汇聚,这些特性使得卷积神经网络具有很好的特征提取能力,且参数更少。 利用各种检查和测试方法,发现系统和设备是否存在故障的过程是故障检测;而进一步确定故障所在大致部位的过程是故障定位。故障检测和故障定位同属网络生存性范畴。要求把故障定位到实施修理时可更换的产品层次(可更换单位)的过程称为故障隔离。故障诊断就是指故障检测和故障隔离的过程。
2024-01-22 10:02:02 73KB 神经网络
1
滚动轴承故障诊断MATLAB程序:快速谱峭度、谱峭度+包络谱分析 滚动轴承故障诊断是机械工程领域的一个重要研究方向。滚动轴承是一种常见的机械元件,用于支撑和转动机械装置中的轴。然而,由于长时间使用或其他原因,滚动轴承可能会出现故障,例如磨损、裂纹或松动等。因此,及时准确地诊断滚动轴承的故障非常重要,以避免设备损坏或生产中断。 MATLAB是一种强大的科学计算和数据分析工具,广泛应用于工程、科学和技术领域。它提供了丰富的函数和工具箱,可以用于信号处理、数据分析、图像处理等各种任务。在滚动轴承故障诊断中,MATLAB可以用于处理和分析滚动轴承的振动信号,以提取特征并判断是否存在故障。 快速谱峭度和谱峭度+包络谱分析是滚动轴承故障诊断中常用的方法之一。快速谱峭度是一种用于检测信号中频率成分变化的方法,可以帮助确定滚动轴承是否存在故障。谱峭度+包络谱分析结合了快速谱峭度和包络谱分析,可以更准确地识别滚动轴承的故障类型和程度。 总之,滚动轴承故障诊断是一个重要的领域,通过使用MATLAB编写的程序和快速谱峭度、谱峭度+包络谱分析等方法,可以帮助工程师和技术人员及时准确地诊断滚动轴承的
2024-01-19 09:20:17 156KB matlab
1
对液压回路系统的工作原理进行总结。结合原理对工作过程中遇到的问题进行分析。针对不同的故障原因,从故障现象、故障分析及解决对策等3个方面进行分析。为保护机械,保证生产提供理论基础。
2024-01-16 21:15:50 310KB 行业研究
1