软件: anaconda jupyter notebook 运行代码文件:naive bayes.ipynb python环境
2023-11-12 20:53:50 55.11MB 机器学习 python 数据集 朴素贝叶斯算法
1
java编写的贝叶斯网络分类器(贝叶斯算法java版本的代码) JavaBayes-0.346.zip JavaBayes-javadoc-0.346.jar JavaBayes-manual-0.346.ps.gz
2023-11-09 07:05:05 901KB 贝叶斯
1
疼痛是一种个人经历,一般被分为急性疼痛和慢性疼痛,可来源于受伤、疾病、手术或其他的健康问题.如果疼痛没有被及时治疗,会对患者的身心健康带来极大的伤害.由于患者自身障碍等问题,患者可能无法自我报告疼痛,而专业人士评估无法保证连续性和客观性.因此,对疼痛自动识别系统的需求日益加大,近十年来,很多研究人员在此领域取得突破性的成果,本文对疼痛自动识别系统进行综述,一方面从疼痛自动识别系统的结构组成方面进行描述,主要包括数据获取、数据预处理、特征提取以及分类等;另一方面从疼痛模态表征多角度进行技术汇总,主要包括行为、语音、生理以及多模态融合等4个方面.本文论述疼痛自动识别系统中的关键技术,并加以对比分析总结出该领域发展的一些挑战和方向.
2023-10-24 10:26:05 2.08MB 疼痛 分类器 数据库 特征提取
1
twitter_sentiment_bert_scikit Twitter美国航空数据集情感分析(情感分析),使用Bert句子编码作为特征,实现了SVM,XGBoost,RandomForest(随机森林)等多个分类算法,从而进行了交叉验证。 数据来自 预安装 我们在Python 3环境中运行该项目,建议您使用Anaconda 3通过以下脚本安装所需的软件包。 当然,您可以使用pip进行安装。 conda create -n tweet_sentiment -c anaconda python=3.7 numpy scikit-learn xgboost pandas tensorflo
1
基于Matlab平台的水果识别分类(分类器,Matlab平台版运行)
2023-10-10 09:18:47 10.45MB Matlab 水果识别分类 分类器
1
在线实例分类器细化(OICR)的多实例检测网络的PyTorch实现 如何开始 git clone http://www.github.com/jd730/OICR-pytorch 依存关系 Python 3.5或更高版本 火炬0.4.0(不是0.4.1) CUDA 8.0或更高 资料准备 PASCAL_VOC 07 + 12 :请按照中的说明准备VOC数据集。 实际上,您可以参考其他任何人。 下载数据后,在文件夹data /中创建软链接。 选择性搜寻 wget https://dl.dropboxusercontent.com/s/orrt7o6bp6ae0tc/selective_search_data.tgz tar -xvf selective_search_data.tgz rm -rf selective_search_data.tgz 将selective_search_
2023-07-19 20:23:35 4.79MB computer-vision pytorch object-detection weakly
1
包括:haarcascade_eye.xml、haarcascade_eye_tree_eyeglasses.xml、haarcascade_frontalcatface.xml、haarcascade_fullbody.xml、haarcascade_lefteye_2splits.xml、haarcascade_lowerbody.xml、haarcascade_profileface.xml、haarcascade_smile.xml、haarcascade_upperbody.xml等
2023-06-22 23:05:47 1.46MB opencv haar-like算法
1
这里的文件是: 1- load_data:从csv文件导入数据2- 可视化:打印特征分布的直方图。 在名为可视化的文件夹中的训练数据中的两个类。 3-estimate_:估计给定数据的模型4-classify_:根据模型和数据进行分类5-测试:使用 alpha=1:0.1:1000 测试 Naive 分类器并在可视化文件夹中打印一个名为 (accuracy 1-1000.pdf) 的图6- InspectTheModel:尝试衡量每个类的每个特征值的影响7-jointProb:计算给定一个类的两个给定特征值的联合概率8- 互信息:计算训练数据上的互信息以驱动最可能的依赖特征对。 9- testingBonus:使用候选特征对测试朴素分类器。 要运行演示,请运行testing.m,但是根据需要更改开始,步骤和结束!
2023-05-18 19:50:58 90KB matlab
1
maxent-srl 使用最大熵分类器的语义角色标记
2023-04-24 19:15:08 54KB Python
1
朴素贝叶斯分类器,包含源代码,IRIS数据集,实测有效
2023-04-13 16:39:44 44KB 贝叶斯
1