Classification of Hyperspectral Images by Gabor Filtering Based Deep Network代码minFunc matlab和drtoolbox。minFunc matlab和 drtoolbox 分别为www.di.ens.fr/~mschmidt/Software/minFunc.html
2022-10-25 12:05:15 6.02MB 高光谱图像 matlab 小波卷积网络
1
hsi matlab代码QRNN3D TNNLS 2020论文的实施 强调 我们的网络在高斯和复杂噪声情况下均优于ICVL数据集上的所有领先方法(2019),如下所示: 我们证明了在31频段自然HSI数据库(ICVL)上进行预训练的网络可用于恢复由于恶劣的大气和水吸收而被现实世界的非高斯噪声破坏的遥感HSI(> 100频段) 先决条件 Python> = 3.5,PyTorch> = 0.4.1 要求:opencv-python,tensorboardX,caffe 平台:Ubuntu 16.04,cuda-8.0 快速开始 1.准备训练/测试数据集 从以下位置下载ICVL高光谱图像数据库(我们仅需要.mat版本) 火车测试拆分可在ICVL_train.txt和ICVL_test_*.txt 。 (请注意,我们分别将101个测试数据分为高斯和复数降噪两部分。) 训练数据集 注意cafe(通过conda安装)和lmdb是执行以下说明所必需的。 阅读utility/lmdb_data.py的函数create_icvl64_31 ,并按照指令注释定义您的数据/数据集地址。 通过python
2022-10-15 17:01:12 2.5MB 系统开源
1
hsi matlab代码代码:用于高光谱图像去噪的低阶张量字典学习方法 《 TSP2020一种用于高光谱图像去噪的低秩张量字典学习方法》一文中的所有matlab代码。 数据集 从来自的ICVL。 我们通过msi=msi(1:2:size(msi,1),1:2:size(msi,2), :)下采样ICVL数据集。 来自的贾斯珀里奇(Jasper Ridge) 资料夹结构 Demo_DL_syn.m : Detect the object ' road ' on denoised jasperRidge HSIs via different methods (Fig. 7, 8). Please run it where we provide the pre‐computing denoising results and you can get the results in Fig. 7 and Fig. 8. Demo_denoise_ge.m : Denoise the CAVE- ' watercolors ' HSI with generated noise. It needs t
2022-10-14 16:21:24 56.57MB 系统开源
1
每个波段,即同一对象在高光谱图像的不同频段上的图像,不仅在空间上具有相关性,而且在光谱之间也具有很强的相关性。 高光谱图像压缩算法需要考虑如何利用空间和光谱的相关性。 在本文中,我们首先使用主成分分析(PCA)来消除光谱相关性。 然后使用方向提升小波变换(DLWT)去除空间相关性。 实验结果表明,与基于DWT的咨询算法相比,本文提出的图像压缩方案具有更高的性能。 空间数据系统委员会(CCSDS)。
2022-09-24 10:45:29 446KB CCSDS; Consultative committee for
1
通过核正交匹配追踪 (KOMP) 和核同时正交匹配追踪 (KSOMP) 进行高光谱图像分类分发代码版本 1.0 -- 01/01/2015 由 Mehmet Altan Toksöz 提供,版权所有 2015,土耳其中东技术大学。 代码是基于以下论文中描述的方法创建的: [1] MA Toksoz 和 I. Ulusoy,“通过内核进行高光谱图像分类基本阈值分类器”,IEEE 地球科学和远程学报传感,已接受出版,2016 年。 [2] Y. Chen、NM Nasrabadi 和 TD Tran,“通过内核稀疏表示进行高光谱图像分类”,IEEE 地球科学和遥感汇刊,卷。 51号1,第 217-231 页,2013 年。 请引用它们! 电子邮件:matoksoz [at] gmail.com
2022-09-19 10:52:28 5.71MB matlab
1
已经提出了几种基于波段的总变化(TV)正规化低秩(LR)的模型,以消除高光谱图像(HSI)中的混合噪声。 这些方法基于LR矩阵分解将高维HSI数据转换为2D数据。 该策略引入了有用的多路结构信息的丢失。 而且,这些基于波段的基于电视的方法以单独的方式利用空间信息。 为了解决这些问题,我们提出了一种空间频谱电视正则化LR张量分解(SSTV-LRTF)方法,以消除HSI中的混合噪声。 一方面,假定高光谱数据位于LR张量中,该张量可以利用高光谱数据的固有张量结构。 基于LRTF的方法可以有效地将LR干净图像与稀疏噪声区分开。 从另一方面,假设HSI在空间域中是分段平滑的。 TV正则化在保留空间分段平滑度和消除高斯噪声方面有效。 这些事实激发了LRTF与电视正则化的集成。 为了解决带状电视的局限性,我们使用SSTV正则化同时考虑本地空间结构和相邻频带的频谱相关性。 模拟和真实数据实验均表明,与最新的电视规则化和基于LR的方法相比,所提出的SSTV-LRTF方法在HSI混合噪声去除方面具有出色的性能。
2022-09-08 08:46:38 4MB 研究论文
1
多时相高光谱图像中的微小变化提取和检测
2022-08-10 20:37:51 554KB 研究论文
1