我在训练yolov5 的时候,自己拍摄视频,提取帧,标记,划分训练集数据集,其中训练集1600张左右,验证集170张左右。标记使用的是labelimg,包含yoloTXT、Xml两种标注文件。可用于手势识别等。 剪刀、石头、布又称“猜丁壳”,是一个猜拳游戏。古老而简单,这个游戏的主要目的是为了解决争议,因为三者相互制约,因此不论平局几次,总会有胜负的时候。游戏规则中,石头克剪刀,剪刀克布,布克石头。 YOLO是当前目标检测领域性能最优算法的之一,几乎所有的人工智能和计算机视觉领域的开发者都需要用它来开发各行各业的应用。 YOLO的优势在于又快又准,可实现实时的目标检测。
2024-09-06 20:41:19 270.26MB 数据集 yolo 石头剪刀布 labelimg
1
验证与设计不同,尤其是初学者,验证会成为一盘散沙——无规可循。然而 为了能够实现验证平台的重用,需要标准的验证语言和标准的验证库。这样一来 在验证的过程中只需要调用验证库中的库单元就可以实现验证的重用。所以为了 解决验证的混乱局面,特此依据 Synopsys 的 SVL 库进行翻译,该库与 OVL 的 使用方式相同,每次的检查对象仅需要例化对应的库单元就可以实现。 其原文来自于 Synopsys 的 SystemVerilog 检查库的讲解文档,翻译难免有错 和生硬的地方,所以请参照相应文件进行阅读。 最后将 Serikanth Vijayaraghavan 和 Meyyappan Ramanathan 编著的《A Practical Guide for SystemVerilog Assertions》的第一章翻译放置在附录 A 中,以 供阅者参考。 SystemVerilog 断言(SVA)是数字电路验证中一种强大的工具,它允许设计者在硬件级别定义期望的行为,从而确保系统按照预期运行。Synopsys的SVA检查库是这个领域的一个重要资源,提供了丰富的预定义检查器,用于简化和标准化验证过程。 1. **SVA检查器库概述** SystemVerilog断言库提供了大量的预定义检查器,这些检查器覆盖了常见的错误检测场景,如数据路径错误、时序问题和协议违规等。它们是基于SystemVerilog的属性和行为语句构建的,可以方便地在验证环境中插入和配置。 2. **全局控制(Global Controls)** 全局控制是影响所有断言的设置,例如,`assertproperty`的超时限制或者全局的严重级别。这些控制可以设置在验证环境的高层次,使得整个验证平台能共享统一的策略。 3. **检查器触发条件** 每个检查器都有一个特定的触发条件,比如时钟边沿、数据变化或者其他事件。这些条件由用户指定,当满足条件时,检查器将被激活并评估断言是否为真。 4. **带有VMM报告性质的检查器** VMM(Virtual Memory Model)是一种流行的验证方法学,它引入了详细的报告机制。当检查器与VMM结合使用时,可以提供更丰富的错误信息,包括错误的位置、时间和其他相关上下文。 5. **定制报告** 用户可以根据需求定制检查失败时的报告信息,包括错误消息、严重级别和类别,以提高调试效率。 6. **共享语法** - **severity_level**:定义断言失败时的严重程度,如error、warning或info。 - **options**:可以用来控制断言的行为,例如禁用或启用某些特性。 - **property_type**:指定断言的类型,例如序列、静态或定时。 - **msg**:自定义的错误消息,显示在检查失败时。 - **category**:分类断言,有助于组织和筛选错误报告。 - **coverage_level_i**:用于覆盖率收集,评估断言的覆盖情况。 - **inst_name**:断言实例的名称,有助于追踪和调试。 - **clk**:关联的时钟信号,用于时序相关的断言。 - **reset_n**:复位信号,通常与断言的初始化和重置行为相关联。 7. **使用示例** 在实际应用中,用户可以通过实例化检查器模块,并设置其参数来使用这些检查器。例如,可以创建一个`always @(posedge clk)`来触发一个数据路径完整性检查,当数据异常时,检查器将报告错误并可能触发覆盖率收集。 Synopsys SVA检查库为设计者提供了强大且灵活的验证手段,通过标准化的库单元和丰富的控制选项,能够有效地管理和组织复杂的验证流程。学习和理解这些检查器的使用,对于提升验证质量和效率至关重要。参考《A Practical Guide for SystemVerilog Assertions》等相关资料,可以进一步深入理解和应用SystemVerilog断言。
2024-09-05 16:35:15 4.73MB 数字电路验证
1
在IT行业中,HTTPS(Hypertext Transfer Protocol Secure)是一种用于在互联网上安全传输数据的协议。它通过使用SSL/TLS(Secure Sockets Layer/Transport Layer Security)加密技术,确保了数据在客户端和服务器之间的传输过程是私密且不可篡改的。然而,在使用HTTPS时,可能会遇到各种验证问题,如`javax.net.ssl.SSLHandshakeException`,这是一个常见的错误,通常表示客户端与服务器之间的SSL/TLS握手过程出现了问题。 `javax.net.ssl.SSLHandshakeException`通常由以下原因引起: 1. **证书信任问题**:服务器的数字证书未被客户端信任。这可能是因为证书不是由受信任的证书颁发机构(CA)签发,或者证书已被撤销。 2. **证书过期**:服务器的证书有效期已过,未及时更新。 3. **证书与主机名不匹配**:证书上的Common Name(CN)或Subject Alternative Names(SANs)与访问的域名不一致。 4. **不兼容的加密套件**:客户端和服务器支持的加密算法不匹配,导致无法建立安全连接。 5. **中间人攻击**:网络中可能存在恶意第三方,试图拦截并篡改通信。 为了解决这些验证问题,我们需要创建一个`Https请求验证工具类`。这个工具类通常包含以下功能: 1. **自定义TrustManager**:在Java中,我们可以实现`X509TrustManager`接口,允许我们自定义证书验证逻辑,例如,接受自签名证书或特定的不受信任的CA签发的证书。 2. **禁用SSL验证**:在某些测试或调试场景下,可能需要临时禁用SSL验证,但这并不推荐在生产环境中使用,因为会降低安全性。 3. **配置SSLContext**:通过`SSLContext`对象,我们可以设置自定义的`TrustManager`和`KeyManager`,控制SSL/TLS连接的行为。 4. **处理hostname验证**:如果证书的域名与预期的服务器域名不匹配,可以使用`HostnameVerifier`来放宽验证规则。 5. **设置SSL/TLS协议版本**:确保连接使用的是安全的SSL/TLS版本,避免使用已知有漏洞的老版本(如TLS 1.0和1.1)。 在实现这样的工具类时,我们首先需要导入相关的Java SSL库,如`javax.net.ssl`和`java.security`。然后,我们可以创建一个静态方法,如`enableUnsafeSSL`,在这个方法中进行上述的配置。下面是一个简化的示例: ```java import javax.net.ssl.HttpsURLConnection; import javax.net.ssl.SSLContext; import javax.net.ssl.TrustManager; import javax.net.ssl.X509TrustManager; import java.security.cert.X509Certificate; public class UnsafeHttpsUtil { public static void enableUnsafeSSL() throws Exception { // 创建一个不进行任何验证的TrustManager TrustManager[] trustAllCerts = new TrustManager[]{new X509TrustManager() { @Override public void checkClientTrusted(X509Certificate[] x509Certificates, String s) throws CertificateException {} @Override public void checkServerTrusted(X509Certificate[] x509Certificates, String s) throws CertificateException {} @Override public X509Certificate[] getAcceptedIssuers() { return new X509Certificate[0]; } }}; // 获取SSLContext实例并使用我们信任的所有证书初始化 SSLContext sslContext = SSLContext.getInstance("SSL"); sslContext.init(null, trustAllCerts, new java.security.SecureRandom()); // 将我们的SSLContext设置到HttpsURLConnection上 HttpsURLConnection.setDefaultSSLSocketFactory(sslContext.getSocketFactory()); // 禁用HTTPS连接的hostname验证 HttpsURLConnection.setDefaultHostnameVerifier((hostname, session) -> true); } } ``` 请注意,这个示例中的`enableUnsafeSSL`方法仅用于演示,实际应用中应谨慎使用,因为它完全绕过了SSL验证,可能导致安全风险。在生产环境中,应该对证书进行正确的验证,确保数据传输的安全性。 在压缩包文件`permithttps`中,可能包含了实现这种HTTPS请求验证工具类的代码或其他相关资源。通过分析和理解这些代码,你可以更深入地了解如何在Java中处理HTTPS验证问题,并根据具体需求进行定制化开发。在实际项目中,务必确保遵循最佳实践,平衡安全性和功能性。
2024-09-02 14:31:32 3KB Https验证
1
UART DUT 介绍、验证功能点提取、UVM 验证代码介绍、Debug 过程和联调过程、覆盖率收集等 UART(Universal Asynchronous Receiver-Transmitter)是一种异步全双工串行通信协议,将要传输的数据在串行通信与并行通信之间进行转换。作为把并行输入信号转成串行输出信号的芯片,UART 通常被集成于其他通讯接口的连结上,其工作原理是将数据的二进制位一位一位地进行传输。 DUT(Device Under Test)功能理解:DUT design Spec 如左图所示,DUT 有两种执行方式,一种是对外围设备接收的数据进行串行到并行的转换(RX 方向);另一种是对传输到外围的数据进行并行到串行的转换(TX 方向)。 DUT 模块理解: 1. APB interface:实现接口信号的解码,用于访问状态,配置寄存器,接收,发送数据到 FIFO。 2. transmit FIFO:8 位宽,16 位深,用于存储从 APB interface 中写入的数据,直到数据被传输逻辑读走,该 FIFO 可以被 disable,使其成为单字节寄存器。 3. receive FIFO:12 位宽,16 位深,用于存储上行端接收的数据以及错误位信息,直到数据被 APB 接口读走,该 FIFO 可以被 disable,使其成为单字节寄存器。 4. transmitter:将传输 FIFO 中的数据实现并行到串行的转换。 5. receiver:将对外围设备数据进行串行到并向的转换,同时还会执行溢出,奇偶校验,frame 错误检测和中断检测,并将其写入到 receive FIFO。 6. 波特率发生器:包含自由运行的计数器,产生内部 x16 时钟和 Baud16 信号。Baud16 是 UART 发射和接收控制提供定时信息。 7. interrupt generation:该控制器在每个外围设备的基础上实现另一级别的屏蔽,这样,全局的中断服务例程可以从系统中断服务器中读取。 UARTLCR_H 寄存器内部宽 29 位,但外部通过 AMBA APB 总线通过三次写入寄存器位置 UARTLCR_H、UARTIBRD 和 UARTFBRD 进行访问。UARTLCR_H 定义了传输参数、字长、缓冲区模式、传输停止位数、奇偶校验模式和中断生成。 波特率配置:波特率除数是由 16 位整数和 6 位小数部分组成的 22 位数字。波特率生成器使用该值来确定位周期。波特率除数 = UARTCLK /(16xBaud Rate)= BRDI + BRDF,其中 BRDI 是整数部分,BRDF 是小数点分隔的小数部分小数 m = integer(BRDF*2^n + 0.5)生成内部时钟启用信号 Baud16,它是一个 UARTCLK 宽脉冲流,平均频率为所需波特率的 16 倍。然后将该信号除以 16,得到传输时钟。 数据传输和接收:对于传输,数据被写入传输 FIFO。如果 UART 已启用,则会导致数据帧开始使用 UARTLCR_H 中指定的参数进行传输。数据继续传输,直到传输 FIFO 中没有数据为止。一旦数据写入传输 FIFO(即 FIFO 非空),BUSY 信号就会变高,并在传输数据时保持高电平。只有当传输 FIFO 为空,并且最后一个字符(包括停止位)已从移位寄存器传输时,BUSY 才被否定。即使 UART 可能不再启用,也可以将 BUSY 断言为 HIGH。 当接收器空闲为 idle 时(UARTRXD 连续 1,处于标记状态)且在数据输入上检测到低电平(已接收到起始位)时,接收计数器(时钟由 Baud16 启用)开始运行,并在正常 UART 模式下在该计数器的第八个周期对数据进行采样。如果 UARTRXD 在 Baud16 的第八个周期上仍然处于低位,则起始位有效,否则会检测到错误的起始位并将其忽略。如果起始位有效,则根据数据字符的编程长度,在 Baud16 的每 16 个周期(即一个位周期之后)对连续数据位进行采样。如果启用了奇偶校验模式,则检查奇偶校验位。如果 UARTRXD 高,则确认有效的停止位,否则会发生帧错误。 UART 读写时序: * UART 读写时序图 * UART 数据帧格式 起始位:发送 1 位逻辑 0(低电平),开始传输数据。 数据位:可以是 5~8 位的数据,先发低位,再发高位,一般常见的就是 8 位(1 个字节),其他的如 7 位的 ASCII 码。 校验位:奇偶校验,将数据位加上校验位,1 的位数为偶数(偶校验),1 的位数为奇数(奇校验)。 停止位:停止位是数据传输结束的标志,可以是 1/2 位的逻辑 1(高电平)。 空闲位:空闲时数据线为高电平状态,代表无数据。 UVM 验证代码介绍: * UVM 验证环境搭建 * UVM 验证用例编写 * UVM 验证结果分析 Debug 过程和联调过程: * Debug 工具选择 * Debug 过程 * 联调过程 覆盖率收集: * 代码覆盖率收集 * 数据覆盖率收集 * FSM 覆盖率收集 通过对 UART DUT 的介绍、验证功能点提取、UVM 验证代码介绍、Debug 过程和联调过程、覆盖率收集等,我们可以更好地了解 UART 模块的工作原理和验证方法,并提高我们对 UART 模块的设计和验证能力。
2024-08-27 11:02:43 6.21MB uart
1
VHDL,全称Very High Speed Integrated Circuit Hardware Description Language,是一种用于硬件描述的语言,它允许设计者用一种接近于自然语言的方式描述数字系统的结构和行为。在这个“VHDL32位除法已验证”的项目中,我们关注的是在VHDL中实现32位除法器的设计和验证。这个设计可能涉及到两种不同的方法:循环法和非循环法。 循环法,也称为迭代法,通常用于实现数字信号处理器中的除法操作。这种方法通过一系列逐步逼近的步骤来求解除法结果。设计中可能包含一个减法器、比较器和加法器等基本逻辑单元,它们在一个循环结构内重复执行,直到达到预期的精度。在VHDL中,可以使用进程(PROCESS)来实现这种循环结构,每次迭代都会更新商和余数的值。 非循环法,又称一次性完成法或快速除法器,通常更复杂但可能提供更快的运算速度。这种设计通常基于查找表、位操作或者分治策略。例如,预计算除数和商的对应关系存储在查找表中,然后通过查询表来快速得出结果。非循环法可能会使用更高级的算法,如Booth算法、Kogge-Stone算法或者Newton-Raphson迭代法,这些算法能够减少乘法和移位的操作次数,从而提高除法的速度。 在Quartus II中验证VHDL设计意味着设计已经被编译、仿真和综合。Quartus II是Altera公司(现为Intel FPGA)的软件工具,用于开发FPGA(Field Programmable Gate Array)和CPLD(Complex Programmable Logic Device)的硬件设计。通过该软件,设计者可以进行逻辑综合,将VHDL代码转化为门级网表,再进行时序分析和功能仿真,确保设计满足性能和功能需求。 仿真文件通常包括激励向量,这些向量用于测试设计的不同输入条件,并检查对应的输出是否符合预期。这些测试用例可能覆盖了各种边界情况,如零除、除数为负、被除数过大或过小等情况,以确保设计的健壮性和鲁棒性。 在这个项目中,设计者不仅实现了32位除法器,还对这两种方法进行了验证,这意味着他们已经确认了这两个实现都能正确无误地进行32位整数的除法运算,且在Quartus II环境下达到了预期的性能。这对于FPGA应用尤其重要,因为硬件实现需要考虑面积、速度和功耗的优化。 总结来说,"VHDL32位除法已验证"项目展示了在VHDL中使用循环法和非循环法实现32位除法器的设计技术,并通过Quartus II工具进行了功能验证。这个设计对于理解数字系统硬件实现、VHDL编程以及FPGA设计流程都有重要的学习价值。
2024-08-26 10:56:01 4.74MB VHDL32位除法
1
易语言是一种专为中国人设计的编程语言,它的目标是让编程变得简单、直观,使得不懂英文的用户也能轻松学习和使用编程技术。本主题聚焦于使用易语言进行POST注册QQ的过程,这涉及到网络请求、数据处理和验证码识别等多个重要知识点。 1. **POST方法**:在HTTP协议中,POST是最常见的请求方法之一。它用于向服务器发送数据,常用于表单提交、文件上传或API接口的数据交互。在注册QQ的过程中,易语言通过POST方法将用户输入的注册信息(如用户名、密码、验证码等)发送到腾讯的注册接口。 2. **注册过程**:QQ注册通常需要用户提供有效的手机号或邮箱地址,以及相应的验证码。在这个过程中,易语言代码需要实现用户界面的交互,收集用户输入的信息,并在后台处理这些信息,通过POST请求将它们发送到腾讯的服务器进行验证。 3. **验证码处理**:验证码是为了防止机器自动注册而设置的一道安全屏障。在易语言中,可能需要用到图像处理和字符识别技术,如“美幻取文本内容”可能指的是一种图像识别库或方法,用于解析接收到的验证码图片并提取其中的文字。这个过程可能涉及图像预处理、颜色分割、边缘检测、字符切割和字符识别等步骤。 4. **错误处理与重试机制**:在注册过程中,可能会遇到网络错误、验证码错误或服务器繁忙等情况,因此易语言代码需要包含适当的错误处理机制,如重试逻辑,以提高注册成功率。 5. **数据加密**:为了保护用户的隐私,易语言在发送注册信息时,应当对敏感数据如密码进行加密处理,防止数据在传输过程中被窃取。可能需要用到的加密算法有MD5、SHA系列或者更高级的加密方式。 6. **网络通信模块**:易语言可能需要使用特定的网络通信库来实现HTTP请求,如EWeb模块,它提供了发送POST请求的功能。开发者需要理解如何配置请求头、设置请求体以及处理服务器返回的响应。 7. **用户界面设计**:易语言源码可能还涉及到用户界面的设计,包括输入框、按钮、提示信息等元素,提供友好的用户交互体验。 8. **代码调试与测试**:开发完成后,需要进行详尽的测试以确保注册功能的稳定性和安全性,包括单元测试、集成测试以及压力测试等,以发现和修复潜在的问题。 "易语言POST注册QQ"涉及到了网络编程、数据处理、图像识别、安全加密以及用户界面设计等多个方面的知识,对于初学者来说,这是一个很好的实践项目,能够提升对易语言和网络编程的理解。
1
《档案数字化工具——usSplit.exe详解》 在信息化飞速发展的今天,档案数字化已经成为各行各业不可或缺的重要环节。档案数字化能够高效地存储、检索和利用信息,提高工作效率,减少纸质文档的保管成本。其中,usSplit.exe是一款专为档案数字化设计的实用工具,其核心功能包括分件操作和成品数据验证,对于提升档案数字化的准确性和效率具有显著作用。 让我们深入了解usSplit.exe的分件功能。在档案数字化过程中,往往需要将大量图片或文件按照特定规则进行分类和整理,这就是所谓的“分件”。usSplit.exe能够根据用户提供的Excel表格数据,自动识别并划分文件,这大大减轻了人工操作的负担。用户只需要在Excel表中设定好文件的分类标准,如文件名、创建日期或者内容关键词等,工具就能智能地将相应的图片或文件归类到不同的文件夹中,实现快速、精准的分件操作。 usSplit.exe的成品数据验证功能同样至关重要。在档案数字化完成后,确保数据的完整性和准确性是关键。该工具可以对已经分件的文件进行数据校验,确保每一份文件与其在Excel表格中的记录相匹配。通过比对文件的元数据、内容或者其他预设的验证条件,usSplit.exe能够检测出可能存在的错误或遗漏,如文件缺失、文件内容错误等,从而及时进行修正,保证档案数字化的质量。 此外,usSplit.exe还采用了aardio编程语言进行开发,这是一种轻量级的、面向对象的编程语言,具备高效的执行能力和易用性。这使得usSplit.exe在保持强大功能的同时,也拥有良好的运行性能和较低的学习曲线。无论是专业技术人员还是普通用户,都能快速上手并灵活应用。 在实际应用中,usSplit.exe广泛应用于政府机关、企事业单位、图书馆、博物馆等各种需要档案管理的场景。它不仅能够有效地提高档案数字化的工作效率,还能降低错误率,确保档案数据的安全可靠。通过与Excel的完美结合,usSplit.exe提供了一种便捷、智能化的解决方案,让档案数字化变得更加高效和规范。 usSplit.exe作为一款专业的档案数字化工具,凭借其强大的分件和数据验证功能,为数字化工作提供了有力的支持。结合aardio语言的优秀特性,使得这款工具在复杂多样的档案管理需求中表现出色,成为了档案数字化领域的一款得力助手。
2024-08-12 03:29:55 865KB 档案数字化 aardio
1
泡椒云卡密验证api源码.js
2024-08-11 13:42:15 23KB
1
炸鸡网络考证系统基于Php+MySql数据库架构的网络考证系统,平安稳定、性能强悍、承载才能强,支持高并发、高承载、多线路,支持效劳器集群架设,高性能设计,速度十分快,效率十分高。 客户端支持VC、VB、DELPHI、易言语、C#、VB.NET、Python、JAVA、TC、安卓、IOS、等一切主流开发言语。
2024-08-08 18:30:20 7.82MB 网络 网络
1
资源描述 内容概要 本资源提供了基于LightGBM模型的贝叶斯优化过程的代码实现。通过使用贝叶斯优化算法,本代码可以高效地调整LightGBM模型的超参数,以达到优化模型性能的目的。同时,代码中还集成了k折交叉验证机制,以更准确地评估模型性能,并减少过拟合的风险。 适用人群 机器学习爱好者与从业者 数据科学家 数据分析师 对LightGBM模型和贝叶斯优化算法感兴趣的研究者 使用场景及目标 当需要使用LightGBM模型解决分类或回归问题时,可以使用本资源中的代码进行模型超参数的优化。 希望通过自动化手段调整模型参数,以提高模型预测精度或降低计算成本的场景。 在模型开发过程中,需要快速找到最优超参数组合,以加快模型开发进度。 其他说明 代码使用了Python编程语言,并依赖于LightGBM、Scikit-learn等机器学习库。 代码中提供了详细的注释和说明,方便用户理解和使用。 用户可以根据自身需求,修改代码中的参数和配置,以适应不同的应用场景。
2024-08-08 15:38:49 6KB 机器学习
1