### 电子科技大学计算机组成原理实验课1:戴维南等定理验证 #### 实验概述 本次实验的主要目的是通过对戴维南定理、基尔霍夫定律(KCL&KVL)以及叠加定理的验证,帮助学生深入理解和掌握电路的基本概念、定律及分析方法。实验采用Multisim或Proteus仿真软件进行模拟实验,便于学生直观地观察到各种定律的实际应用效果。 #### 实验目标 1. **掌握电路的基本概念和定律**:包括但不限于电压、电流、电阻等基本物理量的概念及其相互关系。 2. **掌握电阻电路的等效变换方法和分析方法**:学会如何将复杂的电路简化为等效电路,以便于分析和计算。 3. **深刻理解基尔霍夫定律(KCL&KVL)、戴维南定理、叠加定理等**:通过具体的实验操作加深对这些电路分析基础理论的理解。 4. **熟悉并掌握一种电路仿真软件**:通过实际操作掌握Multisim或Proteus等电路仿真软件的使用方法。 #### 实验内容 1. **验证KCL和KVL**: - **KCL(基尔霍夫电流定律)**:对于电路中的任一节点,流入节点的电流之和等于流出节点的电流之和。 - **KVL(基尔霍夫电压定律)**:对于电路中的任一闭合回路,沿该回路的所有电压升之和等于电压降之和。 2. **验证戴维南定理**:任何线性含源二端网络,都可以用一个等效电压源和一个等效电阻串联的形式来代替。其中等效电压源的电压等于该网络的开路电压,而等效电阻则是将网络内的所有独立源置零后得到的二端网络的入端电阻。 3. **验证叠加定理**:在一个含有多个电源的线性电路中,任意一条支路上的电流或电压可以表示为各个独立电源单独作用时所产生响应的代数和。 4. **选做题:验证最大传输功率的条件**:计算负载电阻在什么条件下可以获得最大功率。 #### 实验原理详解 1. **KCL 定律**:在集总参数电路中,任何时刻,对任一节点k,所有支路电流ik的代数和恒等于零。即: \[ \sum_{k=1}^{n} i_k = 0 \] 2. **KVL 定律**:在集总参数电路中,任何时刻,沿任一闭合回路所有支路电压uk的代数和恒等于零。即: \[ \sum_{k=1}^{n} u_k = 0 \] 3. **戴维南定理**:任何线性含源二端网络N可以用一个等效电压源UOC和一个等效电阻Req串联的形式来代替。其中UOC等于该网络的开路电压,而Req等于将网络N内的所有独立源置零后得到的二端网络的入端电阻。 4. **叠加定理**:在一个含有多个电源的线性电路中,任一支路中的电流或电压可以表示为各个独立电源单独作用时所产生的响应的代数和。具体而言,当考虑某个电源单独作用时,其他电源会被置零,理想电压源置零即用短路替代,理想电流源置零即用开路替代。 5. **最大功率传输条件**:当负载电阻RL等于电源内阻R0时,负载可以从电源处获得最大功率。最大功率公式为: \[ P_{max} = \frac{U^2}{4R_0} \] #### 实验步骤 1. **选择任一仿真软件**:根据个人偏好选择Multisim或Proteus进行实验。 2. **搭建电路**:根据实验要求设计并搭建电路。 3. **仿真并记录相关数据**:在仿真软件中运行实验,记录下理论数据和仿真数据。 4. **对数据进行分析**:对比理论数据和仿真数据,分析误差来源,并总结实验结论。 #### 实验数据及分析 在实验报告中,需要详细记录每一步实验的具体数据,并对数据进行分析。例如,在验证KCL和KVL的过程中,需要列出完整的方程组,并给出理论值与仿真值的比较,以此来验证定律的有效性。 通过本次实验的学习和实践,学生不仅能够巩固电路学的基础理论知识,还能提高运用电路仿真软件的能力,为进一步学习更高级别的电路分析和设计奠定坚实的基础。
2025-06-04 21:01:53 1.19MB
1
超级鹰网银验证码识别转uibot代码工具是一个为实现网银操作自动化的软件工具,它集成了验证码识别和代码转换两大功能。验证码识别功能可以识别各种类型的验证码图像,并将其转换为可识别的文本形式,为自动化软件的运行提供了便利。代码转换功能则是将识别出来的验证码文本转换为uBot软件能够识别和执行的脚本代码。uBot是一款RPA(Robotic Process Automation,机器人流程自动化)工具,它允许用户通过脚本语言来设计和部署自动化流程。通过将验证码识别结果转换为uBot代码,用户可以更容易地将验证验证流程整合到他们的自动化任务中去。 使用这类工具可以大大减少手动输入验证码的需要,提高自动化流程的效率和准确性。验证码的主要目的是区分人类用户和自动化程序(机器人),但随着自动化技术的发展,验证码的难度也在不断增加,这给自动化程序的执行带来了挑战。验证码识别工具的出现,能够在一定程度上缓解这一问题。然而,使用验证码识别工具可能会引发一些安全和道德上的争议,因为它可能被用于绕过验证码的安全措施,所以在使用这类工具时需要考虑其适用性和合法性。 该工具由来也科技测试通过,说明至少在来也科技提供的RPA平台上已经进行过相应的测试,并且能够正常运行。不过,因为RPA平台之间存在差异,该工具是否能在其他品牌的RPA平台上运行就需要用户自行测试。来也科技是一家专注于RPA和智能自动化领域的科技公司,其产品和服务广泛应用于提升企业业务流程的自动化程度,减少重复性工作的需求。 由于该工具的具体技术细节和操作方法没有在描述中详细说明,因此用户可能需要查看相关的使用手册或者联系软件提供商来获取更详尽的信息。在使用这类工具时,建议用户遵守相关法律法规和道德规范,确保使用场景的合法性与合规性,避免造成不必要的法律风险。 此外,该工具以exe为文件扩展名,表明其是一个可执行文件。在Windows操作系统中,通过双击exe文件即可运行程序,但出于安全考虑,用户在运行未知来源的exe文件之前应当确保文件来源的安全性和可信度,防止潜在的恶意软件对系统造成危害。 该工具的标签为“软件/插件”,这意味着它可能既可以作为独立的软件运行,也可以作为一个插件集成到其他软件平台中。标签的设置帮助用户理解该工具的功能定位和使用环境,为选择和使用提供了便捷的分类参考。
2025-06-03 15:40:56 666KB
1
Matlab Simulink下的七自由度整车动力学模型搭建与验证:结合魔术轮胎模型与轮毂电机模型的综合应用,Matlab Simulink模型代搭 七自由度整车动力学模型 魔术轮胎模型 轮毂电机模型 软件使用:Matlab Simulink 适用场景:整车动力学建模,Carsim与Simulink联合仿真验证。 包含:simulink模型,输入参数m文件,代码 ,核心关键词:Matlab Simulink模型代搭; 七自由度整车动力学模型; 魔术轮胎模型; 轮毂电机模型; 软件使用; 整车动力学建模; Carsim联合仿真验证; simulink模型; 输入参数m文件; 代码。,"Matlab Simulink七自由度整车动力学模型:魔术轮胎与轮毂电机仿真"
2025-06-01 19:10:06 366KB
1
矢量控制入门:从零开始手把手教你编写高质量FOC程序,含详细理论指导与实验验证,自主编写,易于移植,专为新手设计全套教程,矢量控制入门 如果你买了一堆学习资料,学习半年甚至更久了,还不会写FOC,那不妨看看这里。 首先声明,非开发版赠送的那类代码。 程序全自主编写,结构清晰严谨,代码工整清爽,无任何穴余代码,无封包库,无TI宏模块,不使用IQmath库,注释率高,学会后,移植方便。 另外,代码在产品上验证过,质量可靠,视频随便放的。 foc看着简单,但理论和实践的差距还是很大的,对于新手来说,系统的、手把手的指导非常重要,所以本人花了很多精力,从新手角度,编写了非常详细程序说明、foc调参步骤、调参过程中问题定位分析、每个模块理论分析到实验时的验证情况等资料,还设计了配套的上位机,可实现在线调整pid参数,在线查看电机各种波形的功能,非常有助于开发者直观了解参数对电机性能的影响。 此外,还提供全方位,无时效,包会,所以,良心价格,勿刀。 本人讲解侧重于程序架构与算法在实现时的原理及注意事项,讲解针对工业实现,而非通电看电机转一转的,目的是让大家通过这个程序的学习,基本可以亲自编写矢量控
2025-05-26 17:03:22 269KB xhtml
1
C程序基于MAC地址的License验证方法-客户端C语言完整版
2025-05-22 15:38:23 3KB
1
SAE J1699-1-2021 是一份关于道路车辆OBD-II(On-Board Diagnostics II)验证测试程序的标准文档,由SAE(美国汽车工程师学会)发布,旨在推动汽车技术与工程科学的发展。这个标准是自愿采用的,其适用性和对于任何特定用途的适合性,包括可能由此引发的专利侵权问题,均由使用者自行负责。 OBD-II系统是汽车诊断的一种标准,它允许技术人员通过车辆的数据端口访问和分析车辆的故障信息。SAE J1699-1标准详细规定了如何验证这些系统是否符合规定的性能和兼容性要求。这份2021年的更新版本是对2006年版的J1699-1标准的修订或确认,确保与当前汽车技术保持同步。 J1699-1标准的稳定化(Stabilized)状态意味着其中涵盖的技术、产品或过程已经成熟,不太可能在可预见的未来发生重大变化。这意味着尽管这个标准被认定为稳定,但用户仍然需要定期检查参考信息,以确保技术要求的持续适用性,因为可能存在更新的技术。 此标准包含了OBD-II系统的测试步骤和程序,旨在确保车辆制造商生产的OBD-II接口能够准确、一致地报告和处理车辆的诊断信息。这些测试可能包括但不限于通信协议一致性、故障代码设置的正确性、故障指示灯的触发条件以及数据流的准确传输。 该标准还涉及到SAE J1850,这是一个早期的通信协议,用于OBD-II系统中,用于在车辆的ECU(电子控制单元)和诊断工具之间交换信息。J1699-1标准可能会扩展到其他通信协议,以适应现代车辆中更复杂的网络架构和更高的数据传输需求。 SAE J1699-1-2021的实施可以帮助确保车辆的排放控制系统的有效性,因为它要求OBD-II系统能够检测和报告任何可能导致排放超过法定限值的故障。这有助于维护环境法规的执行,并促进汽车行业的技术进步和创新。 要获取这份标准的完整内容,可以联系SAE International,通过电话、传真或电子邮件下单,或者访问其官方网站进行在线购买。同时,SAE也鼓励用户提供书面评论和建议,以帮助持续改进这些标准。
2025-05-21 22:54:09 1.14MB
1
在电子设计自动化(EDA)领域,AXI (Advanced eXtensible Interface) 是一种广泛使用的高性能、低延迟的片上系统(SoC)互连总线标准,由ARM公司提出。AXI Lite是AXI协议的一个子集,适用于简单的控制接口,如寄存器访问。在本主题中,我们将深入探讨如何实现AXI Lite协议,并使用Xilinx Verification IP(VIP)来验证自定义设计的AXI Lite Slave和Master端。 理解AXI Lite协议的关键要素至关重要。AXI Lite主要包含两个通道:写地址(Write Address Channel)和读地址(Read Address Channel)。它不包含数据和响应通道,因为它是为简单的读/写操作而设计的。每次传输只涉及单个32位或64位字的数据,且不支持突发传输。协议规定了时序、握手信号以及错误处理机制。 设计AXI Lite协议电路通常涉及以下步骤: 1. 定义接口:明确接口上的信号,如AWADDR(写地址)、ARADDR(读地址)、WDATA(写数据)、RDATA(读数据)、BRESP(写响应)、RRESP(读响应)等。 2. 实现协议逻辑:根据AXI Lite规范,编写状态机来处理各种事务,确保正确响应握手信号。 3. 错误处理:设计适当的错误检测和报告机制,例如非法地址访问、总线冲突等。 Xilinx Verification IP(VIP)是用于验证设计的工具,它提供了AXI协议的参考模型,可以加速验证过程,提高覆盖率。使用Xilinx VIP进行验证,你需要: 1. 配置VIP:根据你的设计配置VIP参数,如地址宽度、数据宽度等。 2. 连接VIP:将VIP与你的设计连接,设置必要的接口信号。 3. 编写测试平台:创建一个测试平台,生成随机或预定的激励来驱动VIP,并捕获设计的响应。 4. 分析结果:通过VIP的事件和覆盖报告,分析测试结果,确保设计符合AXI Lite协议规范。 在文件"axi_vip_test"中,很可能包含了使用Xilinx VIP进行测试和验证的相关脚本和配置文件。这些文件通常包括测试平台的VHDL或Verilog代码、VIP的配置文件以及测试用例。你可以通过运行这些测试来验证你的AXI Lite Slave和Master端设计是否正确实现了协议规范。 实现AXI Lite协议并使用Xilinx VIP进行验证是一项复杂但重要的任务,它涉及到硬件描述语言编程、协议理解和测试平台设计。通过深入理解AXI Lite协议和熟练使用Xilinx VIP,你可以确保你的SoC设计中的接口功能正确且高效。
2025-05-21 18:18:36 5.47MB 网络协议
1
Flask-HTTPAuth 简单扩展,为Flask路由提供基本和摘要HTTP身份验证。 安装 安装它的最简单方法是通过pip。 pip install Flask-HTTPAuth 基本身份验证示例 from flask import Flask from flask_httpauth import HTTPBasicAuth from werkzeug . security import generate_password_hash , check_password_hash app = Flask ( __name__ ) auth = HTTPBasicAuth () users
2025-05-17 22:27:58 58KB python flask security authentication
1
1、单极性调制仿真验证,主要验证单极性调制时各开关管的驱动波形时序逻辑; 2、和双极性调制仿真作对比,因为不同的调制方式对于过零点畸变,THD等都有影响所以想都研究研究;
2025-05-17 19:29:16 45KB 学习笔记
1
内容概要:本文详细介绍了单信道超外差结构AM发射机的设计与仿真验证过程。首先阐述了单信道超外差结构的工作原理,接着重点讲解了AM调制器和A类高频谐振功率放大器这两个关键组件的作用和设计思路。随后,利用Multisim仿真软件对发射机进行建模、设置仿真参数以及运行仿真,最终通过对频谱特性和带宽的细致分析,确认了发射机的各项指标均符合预期标准。整个设计过程严谨科学,确保了发射机的高效稳定运行。 适合人群:电子工程专业学生、无线电爱好者、从事无线通信领域的工程师和技术人员。 使用场景及目标:①帮助读者深入理解单信道超外差结构AM发射机的工作机制;②指导读者掌握Multisim仿真工具的应用技巧;③为后续的实际产品开发提供理论依据和技术支持。 其他说明:文中不仅提供了详细的理论解释,还有具体的实验数据作为支撑,使读者能够全面地了解从概念到实践的全过程。此外,通过调整电路参数优化性能的方法也为类似项目提供了宝贵的参考经验。
2025-05-17 19:16:55 434KB
1