Toast_dem是Android studio api level33 编译打包的 后端实现部分就是灵魂了加载自己的模型即可
1
开发技术环境: Pycharm + Python3.6 + PyQt5 + OpenCV + 卷积神经网络模型 本文采用卷积神经算法对驾驶室内的驾驶员进行实时的面部图像抓拍,通过图像处理的技术分析人眼的闭合程度,从而判断驾驶员的疲劳程度。本文介绍了对目标图像进行人脸检测,然后在分割出的人脸图像中,对人脸图像进行水平投影,并根据水平投影得到的人眼上下眼睑,定位出人眼的位置,而且根据人眼的上下眼睑可以通过事先给出的一定判别标准,判断眼部是否处于疲劳状态,从而达到疲劳检测的目的。当检测出驾驶员处于疲劳时,系统会自动报警,使驾驶员恢复到正常状态,从而尽量规避了行车的安全隐患,并且系统做出预留功能,可以将驾驶员的疲劳状态图片发送给指定的服务器以备查询。因此组成本系统中系统模块如下: (1)视频采集模块 (2)图像预处理模块 (3)人脸定位模块 (4)人眼定位模块 (5)疲劳程度判别模块 (6)报警模块
2023-10-19 10:10:40 2.8MB python
1
项目概况 认证流程 试验要点
2023-09-22 16:02:53 2.85MB 自动驾驶
1
设计主要是基于MATLAB的疲劳驾驶视觉性检测,其研究方案总体处理框架一般包括以下五个阶段: (1) 视频输入阶段:通过摄像头或者其他视频设备获取司机的面部图像数据。 (2) 预处理阶段:对采集到的图像数据进行预处理,去除噪声、调整亮度、对比度等,以提高后续处理的效果。 (3)特征提取阶段:采用图像特征提取算法,从预处理后的图像中提取与疲劳状态相关的特征信息。一般用来检测眼睛状态。可以使用灰度积分投影技术进行眼睛定位。 (4)特征分类阶段:将特征信息与已知模型进行比较和分析,判断司机是否处于疲劳状态。可以使用神经网络、perclos技术进行分类判别。 (5)结果输出阶段:根据特征分类结果,输出报警信号或其他措施,提醒司机注意安全行车。
2023-04-20 11:38:53 5.53MB matlab 毕业设计 软件/插件
1
一个基于Python项目开发的源码,是一个人脸识别系统,主要是用来识别驾驶员的,同时还可以识别他当下的疲劳状态是否需要休息。学生可以用来做毕业设计。同样这个源码可以用在交警摄像头上,可以看看马路上是否有疲劳驾驶的司机,也可以用于高速收费站,毕竟高速上疲劳驾驶是一件非常危险的事情。源码压缩包直接上传了,下载即可运行。
2023-03-30 16:27:48 68.33MB python 人脸识别 检测系统 毕业设计
1
为了更准确地描述交通流,考虑驾驶员反应延迟时间和前车信息的非均衡使用,建立一种多预期延迟跟驰模型。线性稳定性分析表明,驾驶员反应延迟时间的增加会降低交通流的稳定性,多个前车信息的使用可以提高交通流的稳定性。数值仿真的结果表明,减少司机的反映延迟时间和适当地增加前车信息都能提高交通流的稳定性。为尽可能少地引入输入变量,不均衡地利用前车的车间距和速度差信息是必要的;理论和数值模拟的结果均表明驾驶员反应延迟在交通拥堵的形成过程中起着重要作用。
1
司机的困倦是世界和斯里兰卡发生事故的主要原因。 由于睡眠不足和疲劳,驾驶时可能会出现困倦。 避免驾驶员因困倦而引发事故的最好方法是检测驾驶员的睡意并在他入睡前发出警告。 为了检测睡意,已经使用了许多技术,例如眼睛视网膜检测,面部特征识别。 在本文中,我们提出了一种使用驾驶员的眼睛视网膜检测和脉搏率检测来检测驾驶员困倦的方法。 在本报告中,我们提出了一种更准确的睡意检测方法,它是眼睛视网膜检测和脉搏模式检测的混合方法。
2023-01-05 09:23:49 729KB Drowsiness Driver
1
  驾驶员注意力不集中或者分心是道路交通事故的主要原因。 为了减少道路交通事故,设计开发驾驶员疲劳检测系统至关重要。本次实现的应用运用开源库Dlib训练好的模型“shape_predictor_68_face_landmarks.dat”进行68点标定,利用OpenCv进行图像化处理,在人脸上画出68个点,并标明序号。当检测到驾驶员的眼睛闭上4-5 秒时候,就会产生警报。 点击驾驶员困倦检测时,系统会自动打开电脑摄像头,你便可以模拟驾驶室的角色进行测试,当驾驶员在驾驶过程中闭眼,且超过5s系统会触 环境配置:python3.7、配置以下包 tensorflow>=1.12* keras==2.2.4 等。 人脸关键点检测是人脸识别任务中重要的基础环节,人脸关键点精确检测对众多科研和应用课题具有关键作用,如:表情识别、疲劳监测等。因此,如何获取高精度人脸关键点,一直以来都是计算机视觉、模式识别、图像处理等领域的热点研究问题。然而人脸关键点检测方法根据是否需要参数化模型可分为以下两类,基于参数化形状模型的方法和基于非参数形状模型的方法。目前,最为常用的是基于非参数形状模型的深度学习方法。
基于深度学习实现驾驶员分心驾驶行为识别项目源码+数据集+模型+项目说明.7z 附数据集下载链接,输入一张图片,输出驾驶员状态及概率 驾驶员状态识别如下 c0: 安全驾驶 c1: 右手打字 c2: 右手打电话 c3: 左手打字 c4: 左手打电话 c5: 调收音机 c6: 喝饮料 c7: 拿后面的东西 c8: 整理头发和化妆 c9: 和其他乘客说话 【使用工具】 OpenCV Matlibplot Pytorch TensorboardX 【代码介绍】 data_mean.py 统计训练图片的均值与标准差 splite_valid.py 分离验证集与训练集 visual_classes.py 浏览每个驾驶状态 visual_samples.py 浏览随机的样本 model_plot.py 利用_tensorboardX_进行模型的绘制........
基于深度学习的驾驶员分心驾驶行为(疲劳+危险行为)预警系统.zip该项目为人物专注性检测,分为两个检测部分,疲劳检测和分心行为检测。 疲劳检测部分,使用Dlib进行人脸关键点检测,然后通过计算眼睛和嘴巴的开合程度来判断是存在否闭眼或者打哈欠,并使用Perclos模型计算疲劳程度。 分心行为检测部分,使用Yolov5,检测是否存在玩手机、抽烟、喝水这三种行为。 使用方法 依赖:YoloV5、Dlib、PySide2 直接运行main.py,即可使用本程序。 基于深度学习的驾驶员分心驾驶行为(疲劳+危险行为)预警系统.zip该项目为人物专注性检测,分为两个检测部分,疲劳检测和分心行为检测。 疲劳检测部分,使用Dlib进行人脸关键点检测,然后通过计算眼睛和嘴巴的开合程度来判断是存在否闭眼或者打哈欠,并使用Perclos模型计算疲劳程度。 分心行为检测部分,使用Yolov5,检测是否存在玩手机、抽烟、喝水这三种行为。 使用方法 依赖:YoloV5、Dlib、PySide2 直接运行main.py,即可使用本程序。