ASMS跟踪算法是一种在计算机视觉领域中用于目标跟踪的技术,其全称为Adaptive Scale Mean-Shift Tracking。这个算法是基于尺度自适应的mean-shift方法,主要用于解决视频序列中目标对象的运动跟踪问题。2014年,ASMS被提出作为一种新颖的跟踪策略,它在处理目标缩放变化和部分遮挡时表现出了较高的鲁棒性。 我们需要理解mean-shift算法。Mean-shift是一种非参数估计方法,用于寻找数据密度的局部最大值。在目标跟踪中,它通过计算像素空间的颜色直方图来确定目标的位置。颜色直方图是一种统计表示,可以有效地描述图像区域的颜色分布。在mean-shift算法中,我们会对每个像素点进行迭代,每次迭代都将像素点移动到颜色直方图的梯度方向,直到达到一个局部峰值,这个峰值通常对应于目标区域。 ASMS算法则在此基础上进行了改进,引入了尺度自适应性。这意味着算法能够自动调整搜索窗口的大小以适应目标的尺度变化。当目标变大或变小时,ASMS能够有效地追踪目标而不丢失跟踪。这一步是通过在每个迭代步骤中估计目标的尺度变化来实现的,从而提高了跟踪的稳定性和准确性。 在ASMS算法中,通常会使用霍夫变换或者相关滤波器等技术来估计目标的尺度变化。此外,为了处理目标的部分遮挡,ASMS可能还会结合其他特征,如边缘、纹理或形状信息,以增加鲁棒性。 在"asms-master"压缩包中,你应该能找到ASMS算法的源代码实现。这些代码通常包括预处理、颜色直方图的构建、mean-shift迭代以及尺度估计等关键步骤。通过阅读和理解这些源代码,你可以深入了解ASMS算法的内部工作机制,包括如何构建高斯核、如何执行迭代以及如何处理尺度变化等问题。 学习和分析ASMS算法源码可以帮助开发者深入理解目标跟踪的原理,并能为自己的项目提供参考。例如,你可以根据实际需求调整算法参数,或者将ASMS与其他跟踪算法结合,构建更强大的跟踪系统。同时,源码也可以作为教学材料,帮助学生更好地掌握计算机视觉和机器学习领域的核心概念。 ASMS跟踪算法是一种先进的计算机视觉技术,它通过结合mean-shift方法和尺度自适应性,能够在复杂环境中有效地跟踪目标。研究和实践ASMS不仅可以提升我们对目标跟踪的理解,还能为相关应用的开发带来创新的可能性。
2025-10-27 10:37:11 15KB ASMS跟踪 mean-shift 颜色直方图
1
以下是在WIN8.1 x64上面的亲测步骤,成功破解。 1、先安装TexturePacker-3.1.2-x86.msi,安装完毕启动TexturePackerGUI,先点使用lite版,再退出。如果出现使用过期,请无视。 2、找到安装后的CodeAndWeb\TexturePacker\bin目录(或者你自己定义的路径),把Texture.Packer.3.x-patch.exe复制进去。 3、管理员权限点击Patch,等待Patch成功完成。期间杀毒请关掉。 4、启动TexturePackerGUI,用来激活现有的版本。 若想继续安装到3.7.1版本,则继续按以下步骤: 5、到控制面板,把TexturePacker-3.1.2先卸载,删除之前安装后的安装目录。 6、再安装TexturePacker-3.7.1-x64.msi。 7、启动TexturePackerGUI,已可成功使用,查看版本是3.7.1。
2025-10-16 11:14:16 47.31MB 纹理工具 TexturePacke
1
此函数 PATCHT 将显示像 Matlab 函数 Patch 一样的三角网格,但随后带有纹理。 补丁(FF,VV,TF,VT,I,选项); 输入, FF :带有顶点索引的面列表 3 x N VV : 顶点 3 x M TF:纹理列表 3 x N,带有纹理顶点索引VT:纹理坐标 s 2 x K,范围必须为 [0..1] 或真实像素位置I : 纹理图像 RGB [O x P x 3] 或灰度 [O x P] 选项:带有纹理补丁选项的结构,例如EdgeColor、EdgeAlpha 参见帮助“表面属性 :: 函数” Options.PSize : 特殊选项,定义每个图像的纹理大小单个多边形,数字越小,块越大像纹理一样,默认为 64; 笔记: 在显示 10,000 张面Kong的普通 PC 上大约需要 6 秒。 例子, % 负载数据; 加载测试数据; % 显示纹理补丁图,补丁(FF,VV,TF,
2025-10-13 11:51:37 183KB matlab
1
内容概要:文档主要介绍了食用油品质检测与分析的四种技术手段。一是食用油品种识别,通过高光谱图谱结合GLCM算法提取油品纹理特征,再运用GA-SVM模型进行分类,最终以主成分分析散点图和层序聚类图展示分类结果。二是食用油的掺假鉴别,采用SI-PLSR方法建立油茶籽油掺假量预测模型,通过掺假浓度可视化预测图像直观展示掺假程度。三是理化定量预测,利用PCR和PLSR算法建立酸价、过氧化值等理化指标的预测模型并展示预测结果图。四是转基因油品预测,通过对油光谱预处理后建模,以不同颜色油滴标识转基因与否。; 适合人群:食品科学领域研究人员、食用油品质检测技术人员及相关专业的高校师生。; 使用场景及目标:①帮助专业人员掌握食用油品质检测的前沿技术;②为科研教学提供案例参考,提升教学质量;③为实验室检测提供具体操作指导和技术支持。; 其他说明:文档中提到的技术手段均配有图示或动态演示,有助于更直观地理解各个步骤及最终结果。
1
包括符号式样+颜色库,适用于ArcGIS Pro,不适用于ArcGIS,下载前请注意!!!
2025-09-26 19:35:05 380KB ArcGISPro 符号样式
1
在计算机领域,颜色配置文件(Color Profile)是至关重要的,特别是在图像处理、设计和印刷行业中。本文将深入探讨“mac的颜色配置文件”及其在不同操作系统中的应用。 我们需要了解ICC(International Color Consortium,国际色彩联盟)标准。ICC是制定全球色彩管理标准的组织,其创建的颜色配置文件是一种标准化的方法,用来确保色彩在不同设备间的一致性。这些配置文件描述了设备如何感知、解释和再现颜色,从而帮助确保从屏幕到打印的色彩准确性。 "mac的颜色配置文件",如标题所示,是专为苹果Mac操作系统设计的ICC配色文件。这些配置文件针对Mac的显示器进行了优化,确保色彩在台式机和笔记本电脑上显示得更加准确和生动。它们包含了关于特定显示器如何显示颜色的详细信息,包括色域、亮度、对比度以及色彩伽马等参数。 在Mac系统中,颜色配置文件被系统自动应用,以实现最佳的色彩表现。用户也可以在系统偏好设置的“显示器”选项中手动选择或调整合适的颜色配置文件。对于设计师和摄影师而言,选择正确的颜色配置文件能确保在屏幕上看到的颜色接近最终的打印效果。 此外,这些配置文件并不局限于Mac系统。描述中提到,它们也可以用于Windows系统,以改善非苹果设备上的色彩表现。在Windows中,用户可以通过色彩管理工具来导入和应用这些mac的颜色配置文件,从而获得更接近Mac的视觉体验。这在跨平台工作或者需要在多个系统间保持色彩一致性时特别有用。 压缩包内的文件"3502493dd0144843b877d7690e21c0e6"可能就是具体的Mac ICC配色文件。文件名通常由一串随机字符组成,用于唯一标识和保护文件。用户需要解压此文件,并按照上述方法在适当的操作系统中导入和应用,以享受改进后的色彩显示效果。 颜色配置文件是色彩管理的关键组成部分,而“mac的颜色配置文件”则是专门为苹果设备优化的解决方案。通过正确使用和配置这些文件,用户可以提升色彩显示质量,确保在设计、摄影和其他创意工作中的色彩一致性,无论是在Mac还是Windows环境中。对于专业人士来说,理解并充分利用这些配置文件将极大地提高工作效率和作品质量。
2025-09-25 23:10:43 6KB mac.icc
1
在本文中,我们将深入探讨如何在WPF(Windows Presentation Foundation)环境中实现3D模型加载以及将控件3D化,特别是在将控件作为纹理贴在3D模型上的技术。我们将基于给定的"标题"和"描述",讨论Assimp库的使用、3D模型的读取以及如何在球体模型上播放视频。 让我们了解Assimp库。Assimp是一个跨平台的开源库,专门用于导入多种3D模型文件格式,如.obj、.fbx、.3ds等。在WPF项目中,我们可以利用Assimp的.NET绑定(如Assimp64.dll和Assimp32.dll)来读取和处理3D模型数据。这些DLL文件提供了接口,允许我们方便地加载模型到内存中,并将其转换为可以在WPF中使用的数据结构。 接下来,我们将模型加载到WPF中。在WPF中,3D图形是通过`Viewport3D`和`Model3DGroup`等元素构建的。为了展示3D模型,我们需要使用`ModelVisual3D`对象,它包含`GeometryModel3D`,定义了模型的形状,以及`Material`,定义了模型的外观。Assimp加载的模型数据可以被用来创建这些对象,并添加到WPF的3D场景中。 描述中提到的“把一个球体模型中贴上mediaplayer播放视频”,这是3D纹理映射的一个应用。在3D图形中,纹理是指附加到几何表面的图像,可以模拟现实世界中的材料效果。在WPF中,我们可以使用`BitmapImage`或`MediaElement`来处理视频内容。为了将视频贴在球体上,我们需要将视频渲染到一个`BitmapSource`,然后将其用作3D模型的纹理。`MediaElement`可以播放视频,但不直接支持作为纹理,所以我们可能需要利用`RenderTargetBitmap`将视频帧捕获到位图中,再将其应用到球体的材质上。 文件列表中的"mesh.mtl"和"mesh.obj"是3D模型的文件,其中".mtl"文件包含了模型的材质属性,如颜色、光泽度等,而".obj"文件则存储了模型的几何信息。加载这两个文件后,Assimp将解析它们,生成对应的3D模型数据。 至于"MainWindow.xaml.vb"和"Application.xaml.vb",它们是VB.NET编写的WPF应用程序的主要界面和入口点。在这里,我们可以找到关于如何加载模型、创建3D场景以及处理视频纹理的代码。 "WalkinEarth.vbproj"是VB.NET项目文件,包含了项目的配置信息和依赖项,而"nv.wmv"是一个Windows Media Video文件,可能是用于测试在3D模型上播放的视频。 这个示例项目展示了如何在WPF中使用Assimp库加载3D模型,以及如何将3D控件(如视频播放器)作为纹理贴在模型上,提供了一种创新的3D交互体验。通过深入理解和实践这些技术,开发者可以创建出更加生动和交互式的3D应用程序。
2025-09-22 10:17:27 6.79MB 3D模型读取 3D控件 WPF加载模型 WPF3D
1
在Cocos Creator中,开发游戏或应用时可能会遇到需要生成二维码的需求。二维码作为一种高效的信息载体,可以方便地存储和传递各种信息,如网址、文本、联系方式等。本教程将详细介绍如何在Cocos Creator中创建二维码,并提供代码示例,帮助开发者实现二维码功能。 我们需要了解二维码的基本原理。二维码(Quick Response Code)是一种二维条形码,通过黑白小方块的排列来存储信息。Cocos Creator 是一个基于 JavaScript 的跨平台游戏开发框架,它允许开发者使用 JavaScript 语言进行游戏逻辑编写。 为了在Cocos Creator中创建二维码,我们通常需要借助JavaScript库,如`qrcode-generator`或`jsqrcode`。这些库提供了生成二维码的API,可以将字符串信息转化为二维码图像数据。确保将对应的库引入到项目中,可以通过npm安装并将其添加到项目的`project.json`依赖中。 接下来,我们可以创建一个组件或者服务来处理二维码生成。以下是一个简单的代码示例,展示了如何使用`qrcode-generator`库生成二维码: ```javascript import * as qr from 'qrcode-generator'; // 创建二维码数据 let typeNumber = 4; // 二维码类型,数字范围3-40 let errorCorrectionLevel = 'L'; // 错误校正级别,有'L', 'M', 'Q', 'H'四个等级 let qrData = 'http://example.com'; // 要编码的数据 let qrCode = qr(typeNumber, errorCorrectionLevel); qrCode.addData(qrData); qrCode.make(); // 获取二维码图片数据 let imgData = qrCode.createDataURL(4); // 参数表示二维码的缩放级别 ``` 生成二维码图片数据后,我们可以将其转换为Cocos Creator中的纹理,方便在场景中显示。这里需要使用`cc.Image`类和`HTMLCanvasElement.toDataURL()`方法: ```javascript let canvas = document.createElement('canvas'); let ctx = canvas.getContext('2d'); let img = new Image(); img.src = imgData; img.onload = function() { canvas.width = img.width; canvas.height = img.height; ctx.drawImage(img, 0, 0, img.width, img.height); let texture = cc.Texture2D.create(canvas); // 将纹理添加到精灵或其他UI元素上进行显示 }; ``` 在Cocos Creator中,你可以创建一个`cc.Sprite`实例,设置其`texture`属性为生成的二维码纹理,然后将该精灵添加到场景中,这样就可以在游戏或应用中显示二维码了。 对于“返回纹理也可以返回图片数据方便传输”的描述,这意味着生成的二维码不仅可以作为游戏内视觉元素展示,还可以将图片数据发送到服务器进行存储或分享,例如通过网络请求API将二维码数据上传,然后在其他地方下载并解码使用。 Cocos Creator结合JavaScript库可以轻松实现二维码的生成与应用。通过理解二维码的基本概念、选择合适的库、编写JavaScript代码,以及与Cocos Creator的纹理系统相结合,开发者可以为游戏或应用增加更多互动性和功能性。在实际项目中,还可以根据需求扩展,比如添加扫码识别、动态更新二维码内容等功能,以满足不同场景的需求。
2025-09-11 16:49:07 59KB creator 二维码
1
这是一个令人尴尬的简单函数,用于扩展当前可用的MATLAB颜色图。 它可以无缝替代当前的地图,如 jet 和 hsv。 所以要使用它,你只需调用 colormap(othercolor('colorname'))。 该函数处理对任意数量点(othercolor('colorname',numpoints))的插值,并在未指定 numpoints 时使用当前轴作为参考。 可用的地图存储在文件 colorData.mat 中,您可以轻松添加自己的地图。 要获取可用名称列表,只需调用 othercolor() 而不带任何参数。 400 多个颜色图来自 3 个来源: Mathematica(索引、物理、梯度和命名) http://geography.uoregon.edu/datagraphics/color_scales.htm http://www.colorbrewer2.org 这
2025-08-31 16:16:52 88KB matlab
1
本文档介绍了基于YOLOv11模型的安全帽检测系统的开发,旨在识别各种颜色的安全帽。文中涵盖了使用ONNX格式的模型、Tkinter制作的用户界面以及一系列辅助功能如数据增强的方法、置信度调整等细节,并提供了从环境搭建到最终实现的整体指导和代码示例。此外还涉及系统未来的改进步骤。该系统不仅具备良好的鲁棒性和实用性,并且具有很强的灵活性和扩展性。 适合人群:具有基本编程背景并对机器学习尤其是计算机视觉感兴趣的研究人员和从业者。 使用场景及目标:适用于工地上各类环境中对工作人员佩戴情况的有效监测,旨在提高施工场所的安全管理效能;同时也适用于研究人员学习YOLOv11及相关检测技术。 其它:系统在未来有望发展成为实时监控系统,并支持多任务处理,进一步增加其实用价值。
2025-08-26 15:15:03 38KB 深度学习 Tkinter 安全帽检测 ONNX
1