Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-12-15 13:11:54 7MB matlab
1
"复合形法matlab程序编译命令流" 本文档主要讨论了复合形法matlab程序的编译命令流程。复合形法是一种常用的优化算法,用于解决复杂的优化问题。下面将详细介绍复合形法matlab程序的编译命令流程。 标题:复合形法matlab程序编译命令流 描述:本文档介绍了复合形法matlab程序的编译命令流程。 标签:互联网 部分内容: 下面是复合形法matlab程序的编译命令流程: 1. 清除所有变量和图形窗口。 2. 初始化变量a、x、xceq、tmp等。 3. 定义符号变量x1、x2和函数f、g。 4. 使用while循环迭代计算,直到满足条件。 5. 在迭代过程中,计算反射点xr和函数值fxr。 6. 判断xr是否在可行域内,如果是,则break。 7. 如果xr不在可行域内,则继续迭代。 8. 使用另一个while循环计算,直到满足条件。 9. 计算形心xc和函数值gx。 10. 判断xc是否在可行域内,如果是,则break。 11. 如果xc不在可行域内,则继续迭代。 12. 使用函数compare_int计算最好点和最差点。 13. 使用函数zhao_xing_xin计算形心。 14. 使用while循环迭代计算,直到满足条件。 15. 计算函数值fxr和fxh。 16. 判断fxr是否小于fxh,如果是,则更新xh。 17. 重复迭代计算,直到满足条件。 知识点: 1. 复合形法:一种常用的优化算法,用于解决复杂的优化问题。 2. Matlab程序:一种常用的编程语言,用于数值计算和科学计算。 3. 编译命令流程:指的是matlab程序的执行过程。 4. 反射点:在迭代过程中计算的点,用于寻找最优解。 5. 形心:指的是优化问题的最优解。 6. 可行域:指的是优化问题的约束条件。 7. while循环:一种常用的编程结构,用于循环迭代计算。 8. 函数优化:指的是优化问题的目标函数。 结论: 复合形法matlab程序的编译命令流程是一个复杂的优化算法,用于解决复杂的优化问题。通过了解复合形法的原理和matlab程序的编译命令流程,可以更好地理解和应用这种算法。
2024-12-11 14:42:31 19KB
1
题目:数字图像空域隐写与分析技术的实现(50分) 任务: 1、完成对BMP位图格式图像文件的LSB顺序隐写和X2分析。 要求:至少要对两幅不同的图片做隐写和分析,应有两种隐秘数据载入,数据量较大(大于60%)和数据量略小(约20%)。 (10分,隐写5分,分析5分) 2、完成对BMP位图格式图像文件的LSB和MLSB数据位的随机隐写并进行信息量估计法分析(必做),RS或GPC分析(必做一个)。 要求:至少要对两幅不同的图片做隐写和分析,应有两种隐秘数据载入,数据量较大(大于30%)和数据量略小(约10%)。 (20分,隐写10分,分析10分) 3、完成对BMP位图格式图像文件的抗分析的LSB数据位的随机隐写和分析(前面已做的分析程序都测试一遍)。 要求:选用上面采用的图片做对应实验,应有两种隐秘数据载入,数据量较大(大于15%)和数据量略小(约7%)。分析采用RS与其他分析法对照比较。 (10分,隐写5分,分析5分) 4、相关程序应有界面做交互。(缺界面扣1分) 5、完成相关小论文。(10分)
2024-12-11 09:22:34 1.05MB 信息隐藏技术
1
用法: 奖品收集斯坦纳树问题 (PCST) 是在无向图 G(V,E) 中找到一棵树 T = (V',E') 来最大化利润 (T),它被定义为所有节点的总和 -解决方案中的奖品减去建立网络所需的边的成本。 使用 T = FindTree(G,vp) 开始计算。 函数 PCTSP(G,vp,r) 试图找到一个最优的奖品收集 steiner 树,其根节点为 r。 FindTree 使用不同的顶点作为根多次运行 PCTSP 以找到最佳的奖品收集 steiner 树。 输入格式: 程序的输入图由矩阵 G 和向量 vp 表示。 假设图中有 n 个顶点。 顶点由 1、2、3、...、n 表示。 那么 G 是一个 n × n 矩阵。 如果 G(i,j) 是 NaN 或负数,则没有边连接顶点 i 和顶点 j。 否则,它意味着edge(i,j)的代价。 向量 vp 存储顶点的分数。 vp(i) 是顶点 i
2024-12-10 10:10:26 4KB matlab
1
风功率预测是能源领域的重要研究课题,特别是在可再生能源利用中占据关键地位的风电场运营中。随着技术的进步,神经网络模型被广泛应用于风功率预测,因其强大的非线性建模能力,能有效处理复杂的气候数据变化。本项目是基于神经网络的风功率预测在MATLAB环境下的具体实现。 我们要理解神经网络的基本概念。神经网络是一种模拟人脑神经元工作原理的计算模型,由大量的节点(神经元)和连接这些节点的边(权重)构成。在风功率预测中,神经网络可以学习并捕获风速、风向等气象参数与风力发电量之间的复杂关系。 MATLAB是一个强大的数学计算软件,它提供了丰富的神经网络工具箱(Neural Network Toolbox),用于构建、训练和测试各种类型的神经网络模型。在这个项目中,我们可能会用到如Feedforward网络(前馈网络)或者Recurrent Neural Networks(循环神经网络),它们都能处理时间序列数据,适合风功率这种具有时间依赖性的预测任务。 文件"yucemin5.m"很可能是实现神经网络模型的MATLAB代码。在这个文件中,开发者可能定义了神经网络结构,如输入层(风速、风向等气象参数)、隐藏层以及输出层(预测的风功率)。同时,它可能包含了训练网络的步骤,如设置学习率、迭代次数等,并使用反向传播算法优化权重。 文件"fengsu5min.mat"和"gonglv5min.mat"是数据文件,分别存储了5分钟间隔的风速和风功率数据。在MATLAB中,.mat文件常用来存储变量或数据集。这两个文件的数据可能被读入到代码中,作为训练和测试神经网络模型的输入。风速是直接影响风力发电机输出功率的关键因素,而风功率则是我们需要预测的目标变量。 在实际应用中,预测模型通常需要经过以下步骤: 1. 数据预处理:清洗数据,处理缺失值,可能需要对风速和风功率进行归一化或标准化操作,以便更好地适应神经网络的训练。 2. 特征选择:选取对风功率影响较大的气象参数作为输入特征。 3. 模型构建:在MATLAB中创建神经网络结构,设定网络层数、节点数、激活函数等。 4. 训练模型:使用历史数据训练神经网络,调整网络参数以最小化预测误差。 5. 验证与调优:通过交叉验证或保留一部分数据来评估模型性能,根据结果调整网络参数或改进模型。 6. 预测:将训练好的模型应用于新的风速数据,得到未来风功率的预测值。 在风功率预测领域,准确的预测可以帮助风电场运营商更有效地调度电力系统,提高经济效益。因此,不断探索和优化预测模型,如使用更先进的神经网络架构,如LSTM(长短时记忆网络)或GRU(门控循环单元),以及集成学习等方法,都是持续的研究方向。
2024-12-09 15:14:49 40KB 风功率预测 神经网络 MATLAB
1
MATLAB 在整流电路仿真分析中的应用 摘要:本文主要介绍了 MATLAB 在整流电路仿真分析中的应用,包括三相桥式全控整流电路和单相桥式整流电路的仿真分析。通过使用 MATLAB 对整流电路进行仿真分析,可以获得更加精准的结果,并且可以对电路的工作特点和参数进行深入分析。 一、 MATLAB 在整流电路仿真分析中的应用 1.1 电路的构成及工作特点 MATLAB 是一个功能强大且广泛应用的数学软件,对于电路仿真分析具有非常重要的作用。在整流电路仿真分析中,MATLAB 可以对电路的构成和工作特点进行详细的分析,包括电路的拓扑结构、元件参数、工作频率等。 1.2 建模及仿真 使用 MATLAB 可以对整流电路进行建模和仿真,包括电路的电压、电流、功率等参数的分析。通过仿真,用户可以获得电路的详细信息,并且可以对电路进行优化设计。 1.3 参数设置及仿真 在使用 MATLAB 进行整流电路仿真分析时,需要对电路的参数进行设置,包括电压、电流、频率等。通过对参数的设置和调整,可以获得更加精准的仿真结果。 二、 三相桥式全控整流电路的仿真分析 2.1 电路的构成及工作特点 三相桥式全控整流电路是最常见的一种整流电路,MATLAB 可以对该电路进行详细的仿真分析。通过仿真,可以获得电路的工作特点,包括电压、电流、功率等参数的分析。 2.2 故障分析 使用 MATLAB 还可以对电路进行故障分析,包括电路的短路、断路、过载等情况的分析。通过故障分析,可以对电路的可靠性和安全性进行评估。 三、 单相桥式整流电路的仿真分析 3.1 单相桥式半控整流电路 单相桥式半控整流电路是另一种常见的整流电路,MATLAB 可以对该电路进行详细的仿真分析。通过仿真,可以获得电路的工作特点,包括电压、电流、功率等参数的分析。 3.2 带纯电阻性负载情况 在使用 MATLAB 进行单相桥式半控整流电路的仿真分析时,可以对带纯电阻性负载的情况进行分析。通过仿真,可以获得电路的详细信息,并且可以对电路进行优化设计。 3.3 带电阻电感性负载情况 使用 MATLAB 还可以对带电阻电感性负载的情况进行仿真分析。通过仿真,可以获得电路的详细信息,并且可以对电路进行优化设计。 MATLAB 在整流电路仿真分析中的应用非常广泛和重要。通过使用 MATLAB,可以对整流电路进行详细的仿真分析,并且可以对电路的工作特点和参数进行深入分析。
2024-12-02 09:13:02 2.23MB
1
### 电力电子技术MATLAB仿真实验报告知识点总结 #### 一、实验目的与意义 本次实验主要通过MATLAB软件对几种典型的电力电子变换电路进行仿真分析,旨在深入理解不同类型的整流电路在不同负载条件下的工作原理及特性。通过仿真结果的观察与分析,进一步掌握电力电子器件的工作特性和整流电路的设计方法。 #### 二、实验内容概述 本实验主要包括三个部分:单相半波可控整流电路、单相桥式全控整流电路以及单相桥式半控整流电路。每个部分又细分为不同的负载情况(如电阻性负载、阻感性负载等),并针对每种情况进行了详细的电路接线图设计、电压电流波形分析等。 #### 三、实验具体知识点详解 ##### 1. 单相半波可控整流电路 - **电阻性负载** (R=1Ω, U2=220V, α=30°) - **接线图**: 描述了电阻性负载下电路的基本结构,包括电源、晶闸管和负载。 - **输出电压与电流**: 分析了在特定触发角α=30°条件下,输出电压和电流的变化情况。 - **晶闸管电压**: 介绍了晶闸管两端电压随时间变化的情况。 - **输入电压与输出电压波形**: 通过波形图直观展示了输入与输出电压之间的关系。 - **阻感负载** (R=1Ω, L=0.05H, U2=220V, α=30°) - **接线图**: 详细说明了阻感负载下电路的具体连接方式。 - **输出电压与电流**: 对比电阻性负载,分析了阻感负载情况下输出电压和电流的变化特征。 - **晶闸管电压**: 描述了晶闸管在阻感负载条件下的电压变化。 - **输入电压与输出电压波形**: 展示了阻感负载条件下输入输出电压波形的变化。 - **阻感负载+续流二极管** (R=1Ω, L=0.05H, U2=220V, α=30°) - **接线图**: 包含了续流二极管在内的电路连接图。 - **输出电压与电流**: 在加入续流二极管后,输出电压和电流的变化情况。 - **晶闸管电压**: 分析了续流二极管加入后晶闸管两端电压的变化。 ##### 2. 单相桥式全控整流电路 - **电阻性负载** (R=1Ω, U2=220V, α=60°) - **电路图**: 描述了电阻性负载下的电路结构。 - **输入电压与输出电压对比**: 分析了输入输出电压的差异。 - **电阻负载直流电压与电流波形**: 展示了直流电压和电流的变化波形。 - **晶闸管T1波形**: 介绍了晶闸管T1的电压或电流波形。 - **阻感性负载** (R=1Ω, L=0.05H, U2=220V, α=60°) - **电路图**: 详细说明了阻感负载下电路的具体连接。 - **电压输入与输出波形**: 分析了电压输入输出波形的变化。 - **输出电流id**: 描述了输出电流id的变化情况。 - **VT1电压波形**: 分析了VT1两端电压波形。 - **阻感性负载+续流二极管** (R=1Ω, L=0.05H, U2=220V, α=60°) - **接线图**: 包括续流二极管在内的电路连接图。 - **输入与输出电压波形**: 展示了加入续流二极管后输入输出电压的变化。 - **负载电流与电压**: 分析了负载电流和电压的变化情况。 ##### 3. 单相桥式半控整流电路 - **电阻负载** (R=1Ω, U2=220V, α=60°) - **接线图**: 描述了电阻负载下电路的基本结构。 - **二次侧电压与电流**: 分析了二次侧电压和电流的变化情况。 - **晶闸管与二极管电压**: 介绍了晶闸管和二极管两端电压的变化。 - **阻感负载** (R=1Ω, L=0.05H, U2=220V, α=60°) - **接线图**: 详细说明了阻感负载下电路的具体连接方式。 - **二次侧电压与电流**: 分析了二次侧电压和电流的变化情况。 - **晶闸管与二极管电压**: 介绍了晶闸管和二极管两端电压的变化。 - **阻感负载+续流二极管** (R=1Ω, L=0.05H, U2=220V, α=60°) - **接线图**: 包含了续流二极管在内的电路连接图。 - **二次侧电压与电流**: 分析了二次侧电压和电流的变化情况。 - **晶闸管与二极管电压**: 介绍了晶闸管和二极管两端电压的变化。 #### 四、结论 通过本次实验,我们深入了解了不同类型的整流电路在各种负载条件下的工作原理和特性。特别是对于电力电子器件(如晶闸管)的工作状态及其对电路性能的影响有了更深刻的认识。此外,通过MATLAB仿真工具的应用,不仅提高了理论与实践相结合的能力,还为后续电力电子技术的学习和研究奠定了坚实的基础。
2024-12-02 09:07:10 1.46MB
1
【图像融合】基于matlab小波变换(加权平均法+局域能量+区域方差匹配)图像融合【含Matlab源码 1819期】.md
2024-11-30 17:05:13 9KB
1
使用matlab对输入的二维数据进行k-means聚类。因为算法本身的思想,每次聚类的结果可能不同。
2024-11-30 16:59:33 2KB matlab
1
以下是这个MATLAB代码示例的功能和作用: 1. 线性回归分析 在这个示例中,我们使用最小二乘法进行线性回归分析。通过拟合一次多项式模型,我们可以计算出自变量和因变量之间的线性关系式,并进行预测和分析。 2. 层次聚类分析 在这个示例中,我们使用层次聚类算法对数据进行聚类分析。通过将数据分成不同的簇,我们可以发现不同类别之间的相似性和差异性,并进行分类和可视化。 3. ARIMA模型分析 在这个示例中,我们使用ARIMA模型对时间序列进行分析。通过建立适当的模型参数,我们可以对时间序列数据进行建模、预测和分析,以探究其内在规律和趋势。 总之,这个MATLAB代码示例可以帮助我们快速地对数据进行分析和可视化,并对数据进行初步的统计分析和应用。同时,它也提供了一些常用的数据分析方法和算法,可以满足不同的需求和应用场景。 ### MATLAB进行回归分析、聚类分析、时间序列分析的知识点详解 #### 一、线性回归分析 **功能与作用**: 线性回归是一种基本的统计学方法,用于研究两个或多个变量之间的线性关系。在MATLAB中,可以通过`polyfit`函数来进行线性回归分析,特别适用于拟合一元线性回归模型。本示例中,通过给定的一组自变量数据`X`和因变量数据`Y`,采用一次多项式模型来拟合数据,进而得到两变量间的线性关系。 **代码解析**: ```matlab X = [1, 2, 3, 4, 5]; % 自变量数据 Y = [2, 4, 5, 4, 5]; % 因变量数据 fit = polyfit(X, Y, 1); % 进行一次多项式拟合 disp(fit); % 输出拟合结果 ``` - `X` 和 `Y` 分别表示自变量和因变量的数据向量。 - `polyfit(X, Y, 1)` 表示使用一次多项式(即线性模型)对数据进行拟合。 - `fit` 是拟合出的系数向量,其中第一个元素是斜率,第二个元素是截距。 - `disp(fit)` 输出拟合出的系数值。 #### 二、层次聚类分析 **功能与作用**: 层次聚类是一种无监督学习的方法,主要用于探索数据的结构,通过对数据进行分组,揭示出数据中的内在聚类结构。在MATLAB中,可以通过`hierarchicalclustering`函数实现层次聚类。 **代码解析**: ```matlab data = [1, 2, 3, 4, 5, 6, 7, 8, 9]; % 一组数据 hc = hierarchicalclustering(data); % 进行层次聚类 num_clusters = size(hc, 1); % 获取聚类簇数 disp(hc); % 输出聚类结果 ``` - `data` 是需要进行聚类分析的数据向量。 - `hierarchicalclustering(data)` 使用默认的参数对数据进行层次聚类。 - `hc` 是层次聚类的结果,通常是一个树状图的形式表示。 - `size(hc, 1)` 返回聚类簇的数量。 - `disp(hc)` 输出层次聚类的结果。 #### 三、ARIMA模型分析 **功能与作用**: ARIMA模型是时间序列分析中的一种经典模型,它可以用来预测未来的数据点。ARIMA模型由三个部分组成:自回归部分(AR)、差分部分(I)和移动平均部分(MA)。通过调整这三个部分的参数,可以建立适合特定时间序列的模型。 **代码解析**: ```matlab model = arima('Constant', 0, 'D', 1, 'Seasonality', 12, 'MALags', 1, 'SMALags', 12); % 定义ARIMA模型参数 fit = estimate(model, data); % 进行ARIMA模型拟合 forecast = forecast(fit, h=12); % 进行12步预测 plot(forecast); % 绘制预测结果曲线图 ``` - `arima` 函数用于定义ARIMA模型,其中`'Constant', 0` 表示模型中没有常数项;`'D', 1` 表示进行一次差分;`'Seasonality', 12` 表示季节性周期为12;`'MALags', 1` 表示非季节性移动平均滞后项为1;`'SMALags', 12` 表示季节性移动平均滞后项为12。 - `estimate(model, data)` 使用给定的时间序列数据`data`对ARIMA模型进行拟合。 - `forecast(fit, h=12)` 对未来12个时间点进行预测。 - `plot(forecast)` 绘制预测结果的曲线图。 #### 数据处理流程 **操作步骤**: 1. **打开MATLAB软件**。 2. **导入数据**: - 创建数据矩阵: ```matlab x = [1, 2, 3, 4, 5]; % 自变量数据 y = [2, 4, 5, 4, 5]; % 因变量数据 data = [x', y']; % 将数据保存为矩阵形式 writematrix(data, 'data.csv'); % 将数据保存为.csv格式的文件 ``` - 读取数据: ```matlab data = readtable('data.csv'); % 读取.csv文件 X = data(:, 1); % 获取自变量数据 Y = data(:, 2); % 获取因变量数据 b = polyfit(X, Y, 1); % 进行一次多项式拟合 disp(b); % 输出拟合结果 ``` 3. **选择分析方法**: - 可以根据需要选择不同的分析方法,如线性回归、层次聚类或ARIMA模型等。 通过以上详细的解释和代码示例,我们可以看出MATLAB在数据科学领域的强大功能,特别是对于回归分析、聚类分析以及时间序列分析等任务的支持。这些工具不仅能够帮助用户高效地完成数据分析任务,还提供了丰富的可视化功能,便于理解和解释结果。
2024-11-30 16:54:30 5KB matlab
1