链路预测是网络分析的一个重要应用,网络结构在真实场景中随时间发生演变,节点间会产生新的联系或者终止连接,从而导致网络结构变化以及节点中内在的偏向发生偏移。为提升链路预测能力,提出一种基于时序特征的动态网络节点表示的链路预测算法,即每一时刻的节点表示向量由历史的表示向量计算得到,以反映节点在向量空间中的变化规律,同时结合节点间的高阶邻近特性,生成具有鲁棒性的节点向量来维护网络结构。在真实数据集上的实验结果表明,与TNE、DHPE等算法相比,该算法在链路预测任务上的预测性能具有明显提升,适用于大规模的动态网络。
2021-11-24 20:05:58 2.78MB 数据分析算法
1
针对当前基于网络拓扑结构相似性的链路预测算法普遍存在精确度较低且适应性不强的问题,研究发现融合算法能够有效改善这些问题。提出了一种基于神经网络的融合链路预测算法,主要通过神经网络对不同链路预测相似性指标进行融合。该算法使用神经网络对不同相似性指标的数值特征进行学习,同时采用标准粒子群算法对神经网络进行了优化,并通过优化学习后的神经网络模型计算出融合指标。多个真实网络数据集上实验表明,该算法的预测精度明显高于融合之前的各项指标,并且优于现有融合方法的精度。
2021-11-18 16:23:42 543KB 复杂网络 链路预测 神经网络 BP算法
1
现有的链路预测方法的数据来源主要是基于邻居、路径和随机游走的方法,使用的是节点相似性假设或者最大似然估计,尚缺少基于神经网络的链路预测研究。基于神经网络的一些研究表明,基于神经网络的DeepWalk网络表示学习算法可以更加有效地挖掘到网络中的结构特征,已有研究证明DeepWalk等同于分解目标矩阵。因此,提出了一种基于矩阵分解的DeepWalk链路预测算法(LPMF)。该算法首先基于矩阵分解的DeepWalk算法分解得到网络的表示向量;然后通过余弦相似度计算每对节点之间的相似度,构建目标网络的相似度矩阵;最后利用相似度矩阵,在三个真实的引文网络中进行链路预测实验。实验结果表明,提出的链路预测算法性能优于现存的20余种链路预测算法。这充分表明了LPMF能够有效地挖掘网络中节点之间的结构关联性,而且在实际网络的链路预测中能够发挥出较为优异的性能。
2021-11-15 21:13:03 1.77MB 链路预测 神经网络 DeepWalk
1
多张量 多层网络张量分解,用于社区检测,链路预测和度量层相互依赖性。 新版本:可以在找到新的更新高效的cpp和python版本。 在此链接中,您可以找到文档和用法示例。 因此,将不再维护该存储库中的代码,所有将来的新更新都将上载到新的存储库 。 实现以下算法: [1] De Bacco,C.,Power,EA,Larremore,DB,&Moore,C.(2017)。 多层网络中的社区检测,链接预测和层相互依赖性。 物理评论E,95(4),042317。 如果使用此代码,请引用 。 预印本可在或找到。 如果您进一步对MultiTensor扩展感兴趣: :用于合并节点属性 Contisciani M.,Power E.和De Bacco C.(2020)。 多层网络中具有节点属性的社区检测,《科学报告》 10,15736(2020)。 :用于合并互惠 Safdari H.
2021-11-15 10:50:45 326KB C++
1
提升链路预测精度是复杂网络研究的基础问题之一,现有的基于节点相似的链路预测指标没有充分利用网络节点的重要性,即节点在网络中的影响力。针对以上问题提出基于节点重要性的链路预测算法。该算法在基于局部相似性链路预测算法的共同邻居( CN) 、Adamic-Adar( AA) 、Resource Allocation( RA) 相似性指标的基础上,充分利用了节点度中心性、接近中心性及介数中心性的信息,提出考虑节点重要性的 CN、AA、RA 链路预测相似性指标。在 4 个真实数据集上进行仿真实验,以 AUC 值作为链路预测精度评价指标,实验结果表明,改进的算法在 4 个数据集上的链路预测精度均高于共同邻居等对比算法,能够对复杂网络结构产生更精确的分析预测.
2021-10-28 17:50:06 570KB 复杂网络; 中心性; 相似性; 链路预测;
1
基于深度卷积神经网络的多节点间链路预测方法
2021-09-07 10:02:09 2.12MB 研究论文
1
Foundations and modelling of dynamic networks using Dynamic Graph Neural Networks: A survey 动态网络用于广泛的领域,包括社交网络分析、推荐系统和流行病学。将复杂网络表示为随时间变化的结构,网络模型不仅可以利用结构模式,还可以利用时间模式。然而,由于动态网络文学来自不同领域并使用不一致的术语,因此导航具有挑战性。同时,图神经网络 (GNN) 近年来因其在一系列网络科学任务(例如链接预测和节点分类)上表现出色的能力而受到广泛关注。尽管图神经网络很流行并且动态网络模型的好处已经得到证实,但很少有人关注用于动态网络的图神经网络。为了解决这项研究跨越不同领域以及调查动态图神经网络这一事实所带来的挑战,这项工作分为两个主要部分。首先,为了解决动态网络术语的歧义,我们建立了具有一致、详细的术语和符号的动态网络基础。其次,我们使用所提出的术语对动态图神经网络模型进行了全面调查。
1
一种基于链路预测的图聚类算法.pdf
2021-08-20 01:23:38 319KB 聚类 算法 数据结构 参考文献
基于银行交易网络的链路预测-论文.zip
2021-08-18 18:04:14 59KB 论文
复杂网络的链路预测
2021-06-19 15:42:10 1.07MB 复杂网络
1