python逻辑回归模型
2022-01-22 17:35:45 5.36MB python 逻辑回归
1
本文实例讲述了Python利用逻辑回归模型解决MNIST手写数字识别问题。分享给大家供大家参考,具体如下: 1、MNIST手写识别问题 MNIST手写数字识别问题:输入黑白的手写阿拉伯数字,通过机器学习判断输入的是几。可以通过TensorFLow下载MNIST手写数据集,通过import引入MNIST数据集并进行读取,会自动从网上下载所需文件。 %matplotlib inline import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist=input_da
2021-11-21 16:19:22 327KB IS mnist python
1
ROC_Curve R 程序,用于生成逻辑回归模型的 ROC 曲线的交互式图。 使用 ggplot 和 gridSVG 根据 ROCR 性能函数提供的预测数据绘制 ROC 曲线和相关性能指标。
2021-11-02 00:33:46 106KB R
1
1. 数据加载 假如进行房价的预测,这里加载的数据共1000条,共十个维度(十个特征),除了id以外,其余的都是自变量(9个可用) import pandas as pd import numpy as np import os import matplotlib.pyplot as plt os.chdir(r"C:\Users\86177\Desktop") df = pd.read_csv('sample_data_sets.csv') print(df.columns) print(df.shape) –> 输出的结果为: Index(['id', 'complete_year',
2021-11-01 13:59:52 149KB ar AS c
1
承接之前写的“机器学习之线性模型”的那篇文章,这里运用逻辑回归模型实现对文本的一个大体分类,目的是进一步熟悉逻辑回归的运用和sklearn工具包的使用,理解各参数代表的含义,并没有特意做数据处理、特征工程和模型优化方面的考虑来提高准确度。 数据来源于:https://www.dcjingsai.com/common/cmpt/“达观杯”文本智能处理挑战赛_赛体与数据.html 也可以通过如下网盘下载: 链接:https://pan.baidu.com/s/1P67-jvrI2IhZtsWEQWtwkg 提取码:5uvx 题目说明 题目的详细说明可以去赛题官网查看,这里简单描述下: 官方赛道给出
2021-10-15 20:37:22 55KB c gi gis
1
【模式识别小作业】逻辑回归模型(logistic regression model)+Matlab实现+UCI的Iris和Seeds数据集+分类问题 包含:完整全套代码+readme+报告
2021-09-30 13:48:31 212KB logistic regress 逻辑回归 matlab
1
主要介绍了Python利用逻辑回归模型解决MNIST手写数字识别问题,结合实例形式详细分析了Python MNIST手写识别问题原理及逻辑回归模型解决MNIST手写识别问题相关操作技巧,需要的朋友可以参考下
1
逻辑回归模型.pptx
2021-06-18 09:06:22 3.53MB 逻辑 回归 模型
逻辑回归模型实例
2021-05-15 15:25:11 5KB 逻辑回归
1
logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。以胃癌病情分析为例,选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群必定具有不同的体征与生活方式等。因此因变量就为是否胃癌,值为“是”或“否”,自变量就可以包括很多了,如年龄、性别、饮食习惯、幽门螺杆菌感染等。自变量既可以是连续的,也可以是分类的。然后通过logistic回归分析,可以得到自变量的权重,从而可以大致了解到底哪些因素是胃癌的危险因素。同时根据该权值可以根据危险因素预测一个人患癌症的可能性。
2021-04-28 15:09:41 113KB pyhton 逻辑回归
1