本文实例讲述了Python实现的逻辑回归算法。分享给大家供大家参考,具体如下: 使用python实现逻辑回归 Using Python to Implement Logistic Regression Algorithm 菜鸟写的逻辑回归,记录一下学习过程 代码: #encoding:utf-8 Author: njulpy Version: 1.0 Data: 2018/04/10 Project: Using Python to Implement LogisticRegression Algorithm import numpy as np import
2023-03-15 18:33:13 120KB c csv csv文件
1
使用梯度下降的方法进行逻辑回归实战: 问题说明: 这里将建立一个逻辑回归模型来预测一个学生是否被大学录取。 假设你是一个大学的管理员,你想根据两次考试的结果来决定每个申请人的录取机会,你有以前的申请人的历史数据。可以用历史数据作为逻辑回归的训练集。对于每一个样本,有两次考试的申请人的成绩和录取决定。建立一个分类模型,根据考试成绩估计入学概率。 数据链接: 链接:https://pan.baidu.com/s/1-pjwe1ogk30WpzN4Qg1NZA 密码:wqmt 完整代码实现如下: import numpy as np import pandas as pd import matpl
1
文章目录案例简介数据可视化建立分类器sigmoid函数:映射到概率的函数model 函数: 返回预测结果值cost : 根据参数计算损失gradient : 计算每个参数的梯度方向descent : 进行参数更新精度 案例简介 参考资料 逻辑回归函数 Python数据分析与机器学习-逻辑回归案例分析 案例内容 现在有一份学生两次考试的结果的数据 根据数据建立一个逻辑回归模型来预测一个学生的入学概率。 数据内容:两个考试的申请人的分数和录取决定。 # 导入相应的包 import numpy as np import pandas as pd import matplotlib as mpl im
2023-03-10 19:42:31 268KB 回归 梯度 梯度下降
1
主要介绍了python实现逻辑回归的方法示例,这是机器学习课程的一个实验,整理出来共享给大家,需要的朋友可以参考学习,下来要一起看看吧。
1
在 python 中用 scikit-learn 库的 LogisticRegression 模型来实现逻辑回归。首先,自定义一组训练数据,包括输入特征和目标变量;然后,使用 LogisticRegression 类的 fit() 方法来训练模型。最后,用 predict() 方法来进行预测一组输入数据的结果。
2023-03-02 15:48:11 368B 逻辑回归
1
乳腺癌数据集 Python 预测模型 乳腺癌数据集二分类预测 机器学习 深度学习 网格搜索+logistic逻辑回归+神经网络+SVM支持向量机+KNN 条形图折线图可视化 预测效果较好,拟合较为准确。 jupyter notebook numpy pandas matplotlib sklearn 数据分析 数据挖掘
1
isodata的matlab代码博客分类器 具有 l2 正则化的逻辑回归 Gaussian Naïve Bayes kmeans isodata 通用算法
2023-01-27 15:36:45 5KB 系统开源
1
垃圾邮件分类---安然数据集 使用逻辑回归和计数向量化将Enron数据集的电子邮件分为垃圾邮件或火腿邮件。 注意:彻底评论了Jupyter / IPython笔记本,因此这里不需要广泛的自述文件。
2023-01-25 17:31:14 30.69MB
1
莺尾花源码,其中包含: 逻辑回归、决策树、支持向量机、朴素贝叶斯、KNN
1
预测物品的点击率在计算广告、推荐系统等不同业务系统中都有一定需求,因此业界在这方面进行了不少研究。然而在机器学习领域,书籍出版远远落后于业界知识更新,这就要求每个从业者阅读大量资料和论文才能跟上知识更新的步伐,而这又需要耗费大量的时间和精力。本文是作者对阅读过的大量相关研究文献的小结,作者尝试结合文献与工作实践梳理广告点击率预测、推荐方面相关的技术脉络,希望能对大家有所帮助。在计算广告系统中,一个可以携带广告请求的用户流量到达后台时,系统需要在较短时间(一般要求不超过100ms)内返回一个或多个排序好的广告列表;在广告系统中,一般最后一步的排序score=bid*pct^alpha;其中alp
1