人工智能-二阶对角递归神经网络的算法研究及应用.pdf
人工智能-超奈奎斯特(FTN)速率传输的递归神经网络解调方法.pdf
2022-06-23 22:08:37 3.25MB 人工智能-超奈奎斯特(FTN)速
歌声分离RNN 雷茂 芝加哥大学 介绍 这是使用递归神经网络(RNN)开发的歌声分离工具。 它可以将歌手的声音和背景音乐与原始歌曲区分开。 由于分离尚不完善,因此它仍处于开发阶段。 请检查演示的性能。 依存关系 的Python 3.5 脾气暴躁的1.14 TensorFlow 1.8 RarFile 3.0 进度栏2 3.37.1 LibROSA 0.6 Matplotlib 2.1.1 档案文件 . ├── demo ├── download.py ├── evaluate.py ├── figures ├── LICENSE.md ├── main.py ├── model ├── model.py ├── preprocess.py ├── README.md ├── songs ├── statistics ├── train.py └── utils.py 数据
2022-06-22 10:48:33 62.53MB recurrent-neural-networks source-separation Python
1
通过深度学习模型对室内楼道环境的视觉信息进行处理,帮助移动机器人在室内楼道环境下自主行走。为达到这个目的,将楼道环境对象分为路、门、窗户、消防栓、门把手和背景六类,通过图像的语义分割实现对象识别。在对楼道环境的六类对象进行分割的实验中发现,由于门把手比起其他对象小很多,影响了对它的识别效果;将六分类模型改为“5 2”分类模型,解决了这个问题。分类模型的基础是全卷积神经(FCN)网络,可以初步实现图像的分割。为了提高FCN网络的分割效果,从三个方面进行了实验研究:a)取出FCN网络的多个中间特征层,进行多层特征融合;b)考虑到移动机器人行走过程中视觉信息的时间序列特点,将递归神经网络(RNN)的结构纳入到FCN网络中,构成时间递归的t-LSTM网络;c)考虑到二维图像相邻像素之间的依赖关系,构成空间递归的s-LSTM网络。这些措施都有效地提高了图像的分割效果,实验结果表明,多层融合加s-LSTM的结构从分割效果和计算时间方面达到综合指标最佳。
1
timeseries-lstm-keras:基于Jason Brownlee教程,在Keras中使用LSTM递归神经网络在Python中进行时间序列预测
2022-05-21 13:23:01 239KB python deep-learning tensorflow scikit-learn
1
在智能手机上使用递归神经网络(RNN),LSTM和Tensorflow进行人类活动识别 这是我硕士课程的项目,其中涉及使用无线传感器数据挖掘实验室(WISDM)的数据集为端到端系统构建机器学习模型,以使用智能手机加速度计,Tensorflow框架,递归神经网络预测人类的基本活动网络和多个长期短期存储单元(LSTM)堆栈,用于构建具有隐藏单元的深度网络。 训练模型后,将其保存并导出到android应用程序,并使用模型作为概念验证和UI界面进行预测,以使用文本语音API讲出结果。 处理: 清理并合并数据 根据模型要求,通过将每个序列活动的固定长度序列(200个)作为训练数据来进行数据预处理,以最大程度地提高模型的效率。 将数据分为训练(80%)和测试(20%)集。 通过堆叠带有2个完全连接的RNN的多层LSTM内存单元(这将解决消失的梯度问题)来构建一个深层网络。 使用Tensorflow框架构建整个模型,并创建占位符以供模型在端到端系统中访问。 创建最小化损失的损失函数,我们使用最小二乘误差(LSE)或L2范数,因为它将通过一个解决方案提供稳定的解决方案。 在整个训练期间,
1
情感分析 它是一种文本分类,可在IMDB大电影评论数据集上训练递归神经网络(RNN)以进行情感分析。
2022-05-10 20:50:33 5KB JupyterNotebook
1
安全技术-网络信息-时滞递归神经网络稳定性分析及网络化同.pdf
2022-04-29 20:00:08 7.99MB 文档资料 安全 网络 神经网络
rnnlm作者在google内部的一个ppt
2022-03-30 10:26:40 771KB 递归神经网络 语言模型
1
RNN 不同于传统神经网络的感知机的最大特征就是跟时间挂上钩,即包含了一 个循环的网络,就是下一时间的结果不仅受下一时间的输入的影响,也受上一 时间输出的影响,进一步地说就是信息具有持久的影响力。人们在看到新的信 息的时候产生的看法或者判断,不仅仅是对当前信息的反应,先前的经验、思 想的也是参与进去这次信息的推断的。
2022-03-28 16:57:13 1.15MB 研报
1