Learning a Deep Convolutional Network for Image Super-Resolution
2023-07-01 20:01:45 6.29MB 超分辨率
1
现有的自适应多尺度分块压缩感知算法忽略了高频信息在重建中的作用, 导致图像的边缘轮廓得不到充分重建; 并且在压缩分块过程中采用固定分块大小, 没有充分利用图像自身的稀疏性。针对上述不足, 提出一种多尺度分块的自适应采样率压缩感知算法。该算法充分利用小波变换后的高频信号和低频信号, 同时针对图像的固定尺寸分块进行改进。首先, 对低频部分利用自适应邻域特征的空域滤波算法消除块效应; 其次, 对高频部分依据纹理特征自适应选取图像块的大小, 实现样本块尺寸的自动划分和采样率的自适应; 最后, 分别对纹理信息各异的图像进行压缩重建仿真。结果表明, 本方法重建效果明显优于已有的自适应采样率算法。
2023-04-12 16:53:40 11.3MB 图像处理 超分辨率 压缩感知 小波域
1
学习丰富的功能以进行真实图像还原和增强(ECCV 2020) , , , , , 和 论文: : 补充文件: 视频演示: : 摘要:为了从降级版本中恢复高质量图像内容,图像恢复在监视,计算摄影,医学成像和遥感等领域拥有众多应用。 最近,卷积神经网络(CNN)与传统的图像恢复任务方法相比取得了巨大的进步。 现有的基于CNN的方法通常以全分辨率或渐进式低分辨率表示形式运行。 在前一种情况下,获得了空间精确但上下文上不那么健壮的结果,而在后一种情况下,生成了语义上可靠但空间上不太准确的输出。 在本文中,我们提出了一种新颖的体系结构,其总体目标是通过整个网络维护空间精确的高分辨率表示,并从低分辨率表示接收强大的上下文信息。 我们方法的核心是包含几个关键元素的多尺度残差块:(a)并行多分辨率卷积流,用于提取多尺度特征;(b)跨多分辨率流的信息交换;(c)空间和渠道关注机
1
An implementation of Deep Recursive Residual Network for Super Resolution (DRRN), CVPR 2017
2023-04-06 20:04:46 683.51MB Python开发-机器学习
1
SRCNN-CS_SRCNN彩色图像超分辨率重建_彩色超分辨率_matlabSRCNN_超分辨率重建_超分辨重建
2023-03-23 10:25:27 19.33MB
1
介绍了图像超分辨率算法的概念和来源,通过回顾插值、重建和学习这3个层面的超分辨率算法。
2023-03-10 17:43:40 184KB 图像重建
1
超分辨率matlab代码韩 我们的ECCV 2020论文“通过整体注意力网络实现单图像超分辨率”的PyTorch代码 该存储库适用于以下论文中介绍的HAN 张玉伦,李坤鹏,李凯,王丽晨,钟斌能和付云,“通过整体注意力网络实现单图像超分辨率”,ECCV 2020, 该代码基于RCAN(PyTorch)构建并在具有Titan X / 1080Ti / Xp GPU的Ubuntu 16.04 / 18.04环境(Python3.6,PyTorch_0.4.0,CUDA8.0,cuDNN5.1)上进行了测试。 内容 介绍 信息功能在单图像超分辨率任务中起着至关重要的作用。 事实证明,渠道关注对于保留每一层中信息量丰富的功能是有效的。 但是,频道注意力将每个卷积层视为一个单独的过程,从而错过了不同层之间的相关性。 为了解决这个问题,我们提出了一个新的整体注意网络(HAN),该网络由一个图层注意模块(LAM)和一个通道空间注意模块(CSAM)组成,以对图层,通道和位置之间的整体相互依赖性进行建模。 具体地,提出的LAM通过考虑各层之间的相关性来自适应地强调分层特征。 同时,CSAM学习每个通道所有
2023-03-09 20:25:00 15.31MB 系统开源
1
针对现有基于深度学习的图像超分辨率重建方法,其对细节纹理恢复过程中容易产生伪纹理,并且没有充分利用原始低分辨率图像丰富的局部特征层信息的问题,提出一种基于注意力生成对抗网络的超分辨率重建方法.该方法中生成器部分是通过注意力递归网络构成,其网络中还引入了密集残差块结构.首先,生成器利用自编码结构提取图像局部特征层信息,并提升分辨率;然后,通过判别器进行图像修正,最终将图像重建为高分辨率图像.实验结果表明,在多种面向峰值信噪比超分辨率评价方法的网络中,所设计的网络表现出了稳定的训练性能,改善了图像的视觉质量,同时具有较强的鲁棒性.
1
DASR (CVPR-2021)我们的论文DASR的官方PyTorch代码:。 抽象的 如今,无监督超分辨率(SR)一直在飞涨,这是因为它在实际场景中具有实用性和前景可观的潜力。 现成方法的原理在于增强未配对数据,即首先生成对应于现实世界高分辨率(HR)图像的合成低分辨率(LR)图像$ \ mathcal {Y} ^ g $现实LR域$ \ mathcal {Y} ^ r $中的$ \ mathcal {X} ^ r $,然后利用伪对$ {\ mathcal {Y} ^ g,\ mathcal {X} ^ r} $用于在有监督的方式下进行的培训。 不幸的是,由于图像转换本身是一项极富挑战性的任务,因此这些方法的SR性能受到生成的合成LR图像和实际LR图像之间的域间隙的严重限制。 在本文中,我们提出了一种用于无监督的现实世界图像SR的新颖的域距离感知超分辨率(DASR)方法。 训练数据(例
2023-02-20 20:48:45 22.63MB Python
1
srgan-tensorflow超分辨率图像重建
2023-02-15 21:54:54 14.15MB tensorflow 人工智能 python 深度学习
1