c# 本地离线OCR读取图片上文字(PaddleOCR),通过鼠标点击获取对应位置文字,通过输入编号获取对应位置文字
2024-10-13 16:37:14 77.28MB ocr
1
通过poi3.8 解析文件夹内的doc,并以webview加载转换后的html,点击按钮保存整个webview内容 以png图片方式保存。 doc如果有table 排版有瑕疵。 支持doc有图片。
2024-10-10 14:28:29 8.4MB Android webview poi
1
STM32是一款基于ARM Cortex-M内核的微控制器,广泛应用于嵌入式系统设计。STM32H库是STMicroelectronics公司为STM32系列MCU提供的开发支持库,它包含了许多功能强大的函数,便于开发者进行高效编程。在这个主题中,我们将深入探讨如何使用STM32H库进行内部FLASH的读写操作以及结构体数组的数据存取。 内部FLASH在STM32中是用于存储程序代码、配置数据或非易失性数据的重要部分。它的优势在于断电后仍能保持数据,因此常用于保存设置信息或长期存储。下面将详细解释如何进行读写操作: 1. **内部FLASH的读操作**:读取内部FLASH非常简单,因为Cortex-M处理器可以直接从FLASH执行代码。但如果你需要在运行时读取某个特定地址的数据,可以使用`HAL_FLASH_Read()`函数。该函数接受一个地址和数据缓冲区指针作为参数,然后将指定地址的数据复制到缓冲区。 2. **内部FLASH的写操作**:写入内部FLASH涉及到擦除和编程两个步骤。你需要使用`HAL_FLASHEx_Erase()`函数来擦除特定的扇区,确保要写入的区域为空。然后,使用`HAL_FLASH_Program()`函数将新数据写入指定地址。注意,写操作通常有最小编程单位限制,比如在STM32F1系列中通常是2个字节。 结构体数组的写入与读取在实际应用中非常常见,例如保存用户设置或设备状态。以下是如何操作: 1. **结构体数组的写入**:你需要定义一个结构体类型,包含你需要存储的字段。然后,创建一个结构体数组并填充数据。写入FLASH前,将结构体数组转换成字节数组,因为内部FLASH只能按字节写入。使用`HAL_FLASH_Program()`函数,按字节或半字节写入数组的每个元素。 2. **结构体数组的读取**:在读取时,首先分配相同大小的内存空间来接收读取的数据。然后,使用`HAL_FLASH_Read()`函数读取FLASH中的字节序列,并根据结构体大小和排列顺序解析成对应的结构体数组。注意,不同平台的字节序可能会有所不同,可能需要进行字节序转换。 在进行FLASH操作时,需要注意以下几点: - **保护机制**:STM32具有保护机制,防止意外擦除或修改某些区域。在写操作前,需要检查和设置适当的保护状态。 - **错误处理**:`HAL_FLASH_*`函数返回的状态码能够提供操作结果,如成功、繁忙、错误等。必须正确处理这些返回值,避免程序异常。 - **等待状态**:写入和擦除操作可能需要一段时间,因此在调用相关函数后,通常需要等待操作完成。 理解并熟练掌握STM32H库的内部FLASH读写操作及结构体数组的存取是开发STM32应用的关键技能。通过合理使用这些功能,你可以构建可靠且高效的嵌入式系统。
2024-10-06 13:58:13 6.11MB stm32
1
标题中的“基于Qt开发的C++程序”表明这是一个使用Qt框架构建的应用程序,Qt是一个流行的、跨平台的C++库,用于开发用户界面和其他应用程序功能。这个程序的主要目的是读取和显示三维模型文件,特别是gltf和fbx格式。 1. **Qt框架**:Qt提供了丰富的组件和API,用于创建桌面、移动甚至嵌入式设备上的图形用户界面。它支持事件驱动编程,具有信号和槽机制,使得组件间的通信更加便捷。在本项目中,Qt被用来创建和管理UI,展示三维模型。 2. **Assimp库**:Assimp是一个开源的、跨平台的三维模型导入库,能够解析多种3D模型文件格式,包括gltf、fbx、obj、3ds等。在项目中,Assimp负责读取这些文件,将模型数据转换为程序可以处理的内部格式。这一步骤包括了解析文件结构、解码模型数据、处理纹理和骨骼动画等。 3. **OpenGL**:OpenGL是一个用于渲染2D和3D图形的低级图形库,广泛应用于游戏开发、科学可视化和CAD等领域。在这个程序中,OpenGL可能被用来渲染由Assimp解析出的模型数据。开发者可能使用顶点数组、着色器、纹理映射等OpenGL特性来呈现模型。 4. **gltf(GL Transmission Format)**:gltf是一种高效、轻量级的3D模型格式,用于网络传输和加载。相比fbx等传统格式,gltf通常有更快的加载速度和更小的文件大小。它的设计目标是简化Web上的3D内容分发,因此在Web应用中尤其受欢迎。 5. **fbx(Filmbox)**:fbx是Autodesk开发的一种通用3D模型交换格式,广泛应用于游戏引擎、3D建模软件等。它可以存储模型几何数据、材质、纹理、骨骼动画等复杂信息。尽管不是为网络传输设计,但fbx格式也被用于离线渲染和非Web环境的3D应用。 6. **VS2013**:Visual Studio 2013是微软的集成开发环境(IDE),支持C++开发。开发者可能选择使用VS2013来编写、编译和调试这个Qt应用程序,因为它提供了丰富的代码编辑、调试和项目管理工具。 7. **压缩包子文件的文件名称列表:widget** - 这可能是指项目中的一个关键组件或类,如自定义的Qt小部件,可能用于展示3D模型。在Qt中,"Widget"通常是继承自QWidgets基类的自定义用户界面元素。 这个项目涉及到了使用Qt进行UI开发,通过Assimp库处理3D模型文件,利用OpenGL进行图形渲染,支持gltf和fbx两种常见模型格式,并且在Windows环境下使用Visual Studio 2013进行开发。通过这样的程序,开发者可以创建一个能读取和展示3D模型的工具,适用于各种场景,如游戏开发、3D预览或教育应用。
2024-10-05 13:21:32 31.94MB assimp opengl gltf
1
在嵌入式系统设计中,Nios II是一个流行的软核处理器,由Altera(现为Intel FPGA部门)开发。FIFO(First In First Out)是一种常见的数据缓冲区,用于处理两个不同速度或不同时钟域之间的数据传输。在这个场景中,我们将深入探讨如何在Nios II处理器中实现对FIFO的读取操作。 Nios II是32位RISC架构,广泛应用于各种嵌入式应用,如实时控制、数字信号处理等。它提供了丰富的外设接口和可定制性,使得开发者可以根据需求构建系统。在Nios II系统中,FIFO通常用作处理器与硬件外设之间数据交换的桥梁,比如高速ADC/DAC、串行通信接口等。 在“nios ii 中读取fifo数据的软件”这个例子中,我们可能涉及到以下关键知识点: 1. **FIFO硬件设计**:FIFO通常由硬件逻辑实现,包括读写指针、存储器和状态机。读写指针分别跟踪读取和写入的位置,状态机管理FIFO的满、空状态。在Altera FPGA中,可以使用IP核(如 Avalon FIFO)来快速搭建FIFO。 2. **Avalon接口**:这是Altera SoC平台的一种标准总线接口,用于连接Nios II处理器和其他外设。FIFO IP核通常提供Avalon接口,允许Nios II通过读写信号进行数据传输。 3. **软件驱动开发**:在Nios II上读取FIFO数据需要编写相应的驱动程序。这包括初始化FIFO、设置读写地址、处理中断等操作。通常,驱动程序会封装成设备文件,供用户空间的应用程序调用。 4. **中断处理**:在实时系统中,FIFO满或空的中断可以提高效率,避免不必要的等待。当FIFO达到预设阈值时,会触发中断,通知Nios II处理器进行数据读写。 5. **多任务编程**:在读取FIFO数据时,可能需要同时处理其他任务。因此,了解如何在Nios II上进行多任务调度(如使用RTOS,如FreeRTOS)和中断服务例程(ISR)的设计是必要的。 6. **数据同步机制**:为了保证数据的一致性,需要考虑同步问题。例如,当FIFO满时,写操作应暂停;当FIFO空时,读操作才进行。这可能涉及信号量、互斥锁等同步原语。 7. **调试技巧**:在实际应用中,调试是必不可少的步骤。Nios II提供JTAG接口和嵌入式调试模块(EDM),可以使用如 Quartus Prime 的Integrated Software Development Environment (IDE) 进行源码级调试。 8. **性能优化**:对于高吞吐量应用,优化读取FIFO的算法和内存访问模式可以显著提升系统性能。例如,批量读取、预读取等策略可以减少访问延迟。 理解和掌握这些知识点对于成功实现“nios ii 中读取fifo数据的软件”至关重要。实践中,开发者需要根据具体需求,结合硬件资源和软件设计,构建高效可靠的FIFO读取方案。提供的"READ_FIFO"可能包含了实现该功能的源代码或配置文件,用于参考和学习。
2024-10-01 18:05:55 376KB nios fifo
1
易语言是一种专为中国人设计的编程语言,它以简化的语法和直观的界面著称,降低了编程的门槛。在处理大数据量的文本文件时,单线程读取可能会导致程序响应慢或者占用过多系统资源,因此,采用多线程技术进行读取就显得尤为重要。 在“易语言多线程读取大文本文件”这个主题中,核心概念是多线程和文件I/O操作。多线程允许程序同时执行多个独立的任务,提高效率,尤其在处理大型文件时,可以将任务分割成多个部分,由不同的线程并行处理。这可以显著减少整体的处理时间,提高用户体验。 我们要理解易语言中的线程创建和管理。在易语言中,可以使用“创建线程”命令来创建新的执行线程,然后通过传递相应的函数或过程地址,让新线程执行特定的任务。线程间通信可以通过共享数据或使用消息机制实现。 接着,我们讨论如何读取大文本文件。在易语言中,可以使用“打开文件”、“读取文件”和“关闭文件”等命令来完成文件操作。对于大文本文件,一次性读入内存可能会超出系统资源限制,所以通常采用流式读取,即每次只读取一部分内容,处理后再读取下一部分。结合多线程,每个线程可以负责读取文件的一部分,这样既避免了内存压力,又提高了处理速度。 WideCharToMultiByte 是一个Windows API函数,用于将宽字符字符串转换为多字节字符串。在易语言中,调用API函数需要使用“调用DLL函数”命令,并正确设置参数。这个函数在处理包含多种字符集的文本文件时特别有用,因为它可以确保正确地编码和解码不同类型的字符。 在实际应用中,为了保证多线程安全,我们需要考虑线程同步问题。比如,如果多个线程同时尝试访问同一份文件,可能会引发数据冲突。易语言提供了“加锁”和“解锁”命令来实现线程间的互斥访问,确保同一时刻只有一个线程能进行读写操作。 此外,还要注意资源的释放,包括文件句柄和线程句柄。读取完成后,必须确保正确关闭文件和结束线程,防止资源泄漏。 "易语言多线程读取大文本文件"涉及到的知识点包括:易语言的线程编程、文件I/O操作、API函数的使用、字符编码转换以及线程同步与资源管理。通过熟练掌握这些知识点,开发者可以编写出高效、稳定的程序,有效地处理大量文本数据。
1
opencv
2024-09-13 10:54:35 207B opencv
1
在本文中,我们将深入探讨如何使用STM32F407微控制器通过GPIO模拟SPI时序来读取MAX32865传感器的温度数据。STM32F407是一款基于ARM Cortex-M4内核的高性能微控制器,广泛应用于各种嵌入式系统设计。而MAX31865则是一款集成的热电偶冷端补偿器和数字温度转换器,适用于精准测量温度。 我们需要了解SPI(Serial Peripheral Interface)通信协议。SPI是一种同步串行接口,通常用于连接微控制器与外围设备,如传感器、存储器等。在SPI通信中,主设备(这里是STM32F407)控制时钟线(SCLK),并可以通过数据线MOSI和MISO与从设备(MAX32865)交换数据。此外,还有一个片选线(SS或CS),用于选择和断开与特定从设备的通信。 在STM32F407中,我们可以配置GPIO引脚作为SPI模式,但在这个项目中,由于硬件限制或者设计需求,我们将使用GPIO模拟SPI时序。这意味着我们需要通过编程精确控制PB3、PB4和PB4这三个GPIO引脚来实现SPI通信。PB3将作为SCLK,PB4将作为MOSI,而另一个PB4可能用于模拟CS信号。 以下是一些关键步骤: 1. 初始化GPIO:设置PB3、PB4和PB4为推挽输出,并设定适当的上拉/下拉电阻,以防止在通信期间出现不确定的信号状态。 2. 设置时钟:配置RCC(Reset and Clock Control)寄存器,确保GPIO和系统时钟工作正常。 3. 模拟SPI时序:编写函数或中断服务程序,按照SPI协议的时序要求控制GPIO引脚的状态。这包括SCLK的上升沿和下降沿,以及MOSI和CS信号的切换。 4. 发送命令和接收数据:根据MAX32865的数据手册,构造正确的SPI命令字节,通过GPIO模拟SPI发送到从设备。同时,根据SPI协议,你需要在MISO线上接收返回的数据。 5. 读取温度:MAX32865会根据接收到的命令执行相应的操作,如读取温度传感器的值。在完成操作后,它会在MISO线上返回结果。读取这些数据并进行解析,可以得到实际的温度值。 6. 冷端补偿:MAX32865集成了冷端补偿功能,可以消除环境温度对热电偶测量的影响。你需要正确处理返回的温度数据,以获取真实的被测温度。 7. 错误处理:在读取和处理数据时,应检查CRC校验或其他错误检测机制,确保数据的准确性。 总结来说,通过GPIO模拟SPI通信需要对STM32F407的GPIO功能和SPI协议有深入理解,同时需要熟悉MAX32865的特性。这种做法虽然比直接使用硬件SPI接口更为复杂,但在某些情况下可以提供更大的灵活性,例如在资源有限或硬件不支持SPI的场合。通过实践,你可以掌握这个过程,并为未来的嵌入式系统设计打下坚实基础。
2024-09-11 14:21:56 929KB stm32
1
它是基于PM3(Proxmark3)硬件开发的 该软件可以读取普通的NFC卡,如门禁卡,不知道是否有用
2024-09-10 10:35:18 162KB
1
在本压缩包“基于matalb GPS相关读取跟踪和捕获.rar”中,我们可以深入探讨如何使用MATLAB这一强大的编程环境来实现GPS信号的读取、跟踪与捕获。MATLAB,全称Matrix Laboratory,是数学计算、数据分析以及算法开发的首选工具,尤其在信号处理领域有着广泛的应用。 GPS(全球定位系统)是一种利用卫星导航的全球定位技术,通过接收卫星发射的信号,可以计算出接收器的位置、速度和时间信息。在MATLAB中,处理GPS信号通常涉及以下关键知识点: 1. **数据获取**:GPS信号通常是通过天线接收,并由GPS接收机转化为数字信号。这些数据可能以二进制或NMEA(Navigation Message Exchange Format)文本格式存储。在MATLAB中,我们可以使用`textscan`或`fread`函数读取NMEA数据,解析出GPS的纬度、经度、高度、速度等信息。 2. **信号预处理**:原始GPS信号往往包含噪声,需要进行滤波处理。MATLAB提供了多种滤波器设计工具,如巴特沃兹滤波器、FIR滤波器和IIR滤波器,通过`fir1`、`iir1`等函数实现。 3. **载波相位捕获**:GPS信号包含载波和数据码两部分。载波相位捕获是恢复信号的关键步骤,通常采用快速傅里叶变换(FFT)和相关性分析。MATLAB的`fft`函数可以帮助我们完成这一过程。 4. **伪码同步**:GPS信号中的数据码,如Pseudo-Random Noise (PRN)序列,需要通过匹配滤波器与本地生成的码进行同步。MATLAB的`corrcoef`函数可用于计算相关性,实现伪码同步。 5. **多普勒频移校正**:由于接收机和卫星之间的相对运动,GPS信号会产生多普勒频移。利用MATLAB的频谱分析工具,如`spectrogram`,可检测并校正这一频率偏移。 6. **位置解算**:根据至少四颗卫星的信号,通过三边测量法(三角定位)计算接收机的精确位置。这涉及到线性代数运算,MATLAB的线性代数库如`linsolve`或`pinv`可以解决这个问题。 7. **动态跟踪**:为了保持对GPS信号的连续跟踪,需要实时更新载波相位和伪码同步。MATLAB的闭环控制系统设计,如PID控制器,可用于优化跟踪性能。 8. **可视化**:MATLAB的图形用户界面(GUI)和2D/3D绘图功能(如`plot`, `scatter`, `geoplot`等)可以用来展示GPS轨迹、卫星分布及信号质量等信息。 在提供的文件“30.GPS相关读取跟踪和捕获”中,很可能是包含了具体的MATLAB代码示例,涵盖了上述各个步骤。通过学习和理解这些代码,读者可以掌握如何在MATLAB环境中实现完整的GPS信号处理流程。在实际应用中,这有助于提升GPS信号处理的效率和精度,为定位、导航和时间同步等应用提供支持。
2024-09-10 08:56:47 28KB matlab GPS
1