DeepLabv3+水稻稻穗语义分割模型在Pytorch当中的实现 ### 目录 1. [性能情况 Performance](#性能情况) 2. [所需环境 Environment](#所需环境) 3. [注意事项 Attention](#注意事项) 4. [文件下载 Download](#文件下载) 5. [训练步骤 How2train](#训练步骤) 6. [预测步骤 How2predict](#预测步骤) 7. [评估步骤 miou](#评估步骤) 8. [参考资料 Reference](#Reference) ### 所需环境 torch==1.2.0 ### 注意事项 代码中的deeplab_mobilenetv2.pth和deeplab_xception.pth是基于VOC拓展数据集训练的。训练和预测时注意修改backbone。 ### 训练步骤 #### a、训练voc数据集 1、将我提供的voc数据集放入VOCdevkit中(无需运行voc_annotation.py)。 有问题请关注私聊,包此代码的答疑服务,基本秒回,不满意加球球包退款,可接受定制服务
2023-04-08 12:04:03 376.6MB DeepLabv3+ 水稻稻穗分割 pytorch 语义分割
PyTorch中的语义分段PyTorch需求中的语义分段主要特征模型数据集损失学习率调度程序数据增强训练PyTorch需求中的语义分段PyTorch需求中的语义分段主要特征模型数据集损失学习率调度器数据增强训练推理代码结构配置文件格式包含此重现PyTorch实现了针对不同数据集的不同语义分割模型的实现。 要求在运行脚本之前,需要先安装PyTorch和Torchvision,以及用于数据预处理和tqd的PIL和opencv
2023-04-06 13:13:14 598KB Python Deep Learning
1
遥感影像中的建筑物分割标注,内含图片1000张,标签1000个。纯手工标注,公开分享资源。
2023-03-20 11:13:27 378.21MB 数据集 建筑物分割 语义分割 深度学习
1
语义分割 用SegNet进行室内语义分割。 依赖 数据集 按照 下载 SUN RGB-D 数据集,放在 data 目录内。 $ wget http://3dvision.princeton.edu/projects/2015/SUNrgbd/data/SUNRGBD.zip $ wget http://3dvision.princeton.edu/projects/2015/SUNrgbd/data/SUNRGBDtoolbox.zip 架构 ImageNet 预训练模型 下载 放在 models 目录内。 用法 数据预处理 该数据集包含SUNRGBD V1的10335个RGBD图像,执行下述命令提取训练图像: $ python pre-process.py 像素分布: 数据集增强 图片 分割 图片 分割 训练 $ python train.py 如果想可视化训练过程,可执行: $ t
2023-03-18 08:26:30 11.86MB Python
1
语义分割【道路裂缝数据集】,适用于语义分割道路裂缝分割,纯手工标注。原图共120张图片,标注后的json文件共120个。博主也用此数据集训练过,精度能够在80以上,精度算是挺不错的,资源免费开放下载,希望能帮到大家。
1
论文仅供参考学习使用。 通过融合浅层网络高分辨率的细节特征来改进 PSPNet-50 网络模型,减小随着网络的加深导致空间信息的丢失对分割边缘细节的影响。然后通过交互分割算法获取一至两幅图像的分割先验,将少量分割先验融合到新的模型中,通过网络的再学习来解决前景/背景的分割歧义以及多图像的分割一致性。最后通过构建全连接条件随机场模型,将深度卷积神经网络的识别能力和全连接条件随机场优化的定位精度耦合在一起,更好地处理边界定位问题。
1
模型在FloodNet数据集上进行了训练,mIOU在0.83左右,可训练自己的数据集 建议在训练网络的时候将输入的训练集其切分为384x384的小图片后,再来进行训练 模型采用标准的UNet,可以采用如下方式训练你自己的模型 数据集地址可以在train.py中修改为你自己的文件夹 python train.py -- --epochs 20 --batch-size 16 --learning-rate 2e-4 --scale 1 --validation 0.1 --classes 10 --amp 其中--amp为半精度训练 --scale是训练的时候对图片进行缩放,已经裁剪为384x384后就不需要再裁剪了
2023-03-10 17:36:33 608.14MB 语义分割 pytorch 深度学习 python
1
基于YOLOv5和PSPNet的实时目标检测和语义分割系统源码.zip
2023-03-10 16:48:53 322.58MB YOLOv5
1
数据集切割为600x600大小,可自行调整参数进行训练
2023-03-08 12:15:19 1.29MB unet potsdam数据集 语义分割
1
道路分割 客观的 在自动驾驶的情况下,给定前摄像头视图,汽车需要知道道路在哪里。 在这个项目中,我们训练了神经网络,通过使用一种称为完全卷积网络(FCN)的方法来标记图像中道路的像素。 在此项目中,使用KITTI数据集实施FCN-VGG16并对其进行了培训,以进行道路分割。 演示版 (单击以查看完整的视频) 1代码和文件 1.1我的项目包括以下文件和文件夹 是演示的主要代码 包含单元测试 包含一些帮助程序功能 是带有GPU和Python3.5的环境文件 文件夹包含KITTI道路数据,VGG模型和源图像。 文件夹用于保存训练后的模型 文件夹包含测试数据的细分示例 1.2依赖关系和我的环境 Miniconda用于管理我的。 Python3.5,tensorflow-gpu,CUDA8,Numpy,SciPy 操作系统:Ubuntu 16.04 CPU:Intel:registered:Core:trade_mark:i7-68
1