提出了利用小波变换(WT)、非负稀疏矩阵分解(NMFs)和Fisher线性判别(FLD)来进行人脸识别。用小波变换分解人脸图像,选择最低分辨率的子段,既能捕获到人脸的实质特征,又有效地降低了计算复杂性;非负稀疏矩阵分解能显示地控制分解稀疏度和发现人脸图像的局部化表征;Fisher线性判别能在低维子空间中形成良好的分类。实验结果表明,这种方法对光照变化、人脸表情和部分遮挡不敏感,具有良好的健壮性和较高的识别效率。
1
提出了一种改进的模板匹配方法. 该方法是在传统的模板匹配方法的基础上, 通过对字符特征区域的扩大和 加强注意设计了一种改进的模板, 以达到更有效的匹配结果. 将该方法应用于沪宁高速公路收费口处实拍的车牌图像 库中, 其平均识别率达到 97 . 1%. 实验结果表明本文所提出的改进的模板匹配方法具有较高的识别率和鲁棒性
2023-04-07 00:59:53 242KB 模板匹配 字符识别
1
为了减少老年人因跌倒而造成的伤害, 及时有效地识别跌倒行为, 提出了一种基于三轴加速度传感器的人体跌倒识别方法。首先将加速度传感器放置于人体腰腹位置, 采集人在运动时的加速度变化数据; 然后使用日常活动数据训练隐马尔科夫模型 (HMM), 利用老年人活动状态相对较少的特点, 从测量数据与HMM的匹配程度寻找“疑似”跌倒行为; 最后计算短暂时间内的身体倾角, 检测人体躺卧姿态, 完成跌倒识别。利用HMM和身体倾角识别跌倒, 解决了生活中缺乏跌倒数据训练样本的问题, 提高了某些近似行为的区分度。仿真结果表明, 该方法在有效识别跌倒行为的同时, 提高了正确率。
1
针对煤矿生产区域的监控视频较为模糊且人员行为类型复杂,常规行为识别方法的准确率较低的问题,提出了一种基于动态注意力与多层感知图卷积网络(DA-GCN)的煤矿人员行为识别方法。采用Openpose算法提取输入视频的人体关键点,得到3个维度、18个坐标的人体关键点信息,降低模糊背景信息的干扰;通过动态多层感知图卷积网络(D-GCN)提取人体关键点的空间特征,通过时间卷积网络(TCN)提取人体关键点的时间特征,提高网络对不同动作的泛化能力;使用动态注意力机制,增强网络对于动作关键帧、关键骨架的注意力程度,进一步缓解视频质量不佳带来的影响;使用Softmax分类器进行动作分类。通过场景分析,将井下行为分为站立、行走、坐、跨越和操作设备5种类型,构建适用于煤矿场景的Cumt-Action数据集。实验结果表明,DA-GCN在Cumt-Action数据集的最高准确率达到99.3%,最高召回率达到98.6%;与其他算法相比,DA-GCN在Cumt-Action数据集和公共数据集NTU-RGBD上均具有较高的识别准确率,证明了DA-GCN优秀的行为识别能力。
1
一种基于卷积神经网络的信号调制方式识别方法.pdf
2023-03-27 21:34:37 2.34MB
1
使用 MATLAB 软件和 Open CV 开源库搭建实现 A-PCA+BP神经网络的人脸识别系统,系统能够实时检测人脸与识别。
2023-03-18 20:03:28 4.02MB PCA BP 人脸识别
1
针对电力设备巡检智能化水平较低的现状,文中将增强现实(Augmented Reality,AR)技术应用于电力设备巡检过程。文中从智能巡检终端、服务器与数据库3个层面构建了基于AR技术的电力设备智能巡检系统架构。提出基于AR技术和深度神经网络(Deep Neural Networks,DNN)算法的电力设备故障识别方法,将智能巡检终端采集的图像作为输入,在线识别电力设备可能存在的故障类型。通过仿真测试表明,所提方法故障识别时间与支持向量机(Support Vector Machine, SVM)与BP神经网络(Back Propagation-Neural network, BP-NN)算法相近。但是各类故障识别准确率均大于98%,大于SVM与BP-NN算法,所提方法能够快速准确地识别电力设备故障类型。
1
基于图论的乳腺肿瘤超声图像的分割和识别方法.pdf
2023-02-20 21:44:14 2.16MB 图论 图像算法 医疗 分割
1
提出一种基于肌电传感器 和加速度计的识别人体手势的智能信息系统
2023-01-08 20:51:34 840KB 肌电传感器
1
研究了多模态身份识别问题,结合人脸和掌纹两种不同生理特征,提出了基于特征融合的多模态身份识别方法。对人脸和掌纹图像分别进行Gabor小波、二维主元变换(2DPCA)提取图像特征,根据新的权重算法,结合两种模态的特征,利用最邻近分类器进行分类识别。在AMP、ORL人脸库和Poly-U掌纹图像库中的实验结果表明,两种模态的融合能更多地给出决策分析所需的特征信息相比传统的单一模态的人脸或掌纹识别具有较高的识别率,更具安全性和准确性。
1