1.项目利用TF-IDF(Term Frequency-Inverse Document Frequency 词频-逆文档频率)检索模型和CNN(卷积神经网络)精排模型构建了一个聊天机器人,旨在实现一个能够进行日常对话和情感陪伴的聊天机器人。 2.项目运行环境:Python环境、TensorFlow 环境和Python包jieba、tqdm、nltk、pyqt5等。 3.项目包括4个模块:数据预处理、模型创建与编译、模型训练及保存、模型生成。数据来源于GitHub开源语料集,下 载地址为: https://github.com/codemayq。在TF-IDF模型中定义的架构为:计算TF-IDF向量,通过倒排表的方式找到与当前输入类似的问题描述,针对候选问题进行余弦相似度计算。模型生成一是通过中控模块调用召回和精排模型;二是通过训练好的召回和精排模型进行语义分类,并且获取输出。 4.准确率评估:测试准确率在90%左右。 5.项目博客:https://blog.csdn.net/qq_31136513/article/details/131540115
2024-04-11 11:51:58 49.67MB tensorflow 深度学习 人工智能 python
1
python yolov5 训练数据集 无人机航拍数据集合 人工智能 深度学习 目标检测 目标识别
2024-03-21 14:47:47 313.82MB 人工智能 python 数据集 深度学习
1
ChatGPT技术的使用教程、使用方法、使用技巧、使用注意事项、使用中常见问题
2023-12-14 11:11:18 38KB
1
咖啡豆识别训练数据集图片
2023-11-15 22:45:05 324.64MB 数据集 深度学习
1
python yolov5 训练数据集 无人机航拍数据集合 人工智能 深度学习 目标检测 目标识别
2023-09-20 16:32:25 726.65MB 人工智能 python 数据集 深度学习
1
卡车数据集,yolov5 训练数据
2023-09-17 16:28:00 50KB 数据集
1
使用OpenCV的svm做的图像分类数据,分类效果很好,在98%以上
2023-05-30 22:20:39 24.18MB armor
1
密集人群人头检测训练数据集 人流统计数据集 已经转换成yolo txt格式标注文件 4374张图片 4374个yolo标注格式txt文件
2023-05-03 01:22:30 445.46MB 数据集
1
使用Bert进行文本二分类实验用的训练数据文件,仅限学习使用。
2023-03-15 10:19:54 128KB 文本分类 Bert
1
数据集介绍:https://seungjunnah.github.io/Datasets/reds.html 用于训练去模糊算法的数据集,包含清晰和模糊图片各24000张,包含240个场景,24000对模糊和清晰的图片。
2023-03-14 16:29:34 130B 图像数据集
1