使用pytorch搭建自编码器,实现图像的去噪
2022-12-19 12:27:23 26.36MB 深度学习
1
1.自编码器简介,包括(1.1什么是自编码器,1.2自编码器有什么用,1.3怎样构建自编码器,1.4自编码器及其变体) 2.稀疏自编码器(SAE),包括(2.1为什么要有稀疏自编码器,2.2稀疏自编码器介绍,2.3稀疏自编码器原理,2.4与自编码器的区别) 3.收缩自编码器(CAE),包括(3.1 预备知识,3.2 CAE目标,3.3 CAE构造) 4.去噪自编码器(DAE),包括(4.1什么是去噪自编码器,4.2去噪自编码器的结构) 5.变分自编码器(VAE),包括(5.1为什么用变分自编码器,5.2变分自编码器的结构)
2022-11-22 20:26:23 5.22MB Auto-encoding 深度学习 人工智能
1
CVAE自编码器训练过程
2022-10-31 21:06:08 15KB python
1
自编码器的源代码 非常有效 在matlab上运行状态良好,
2022-10-18 22:18:53 137KB 自编码器_matlab
1
VAE总结 VAE的本质是什么?VAE虽然也称是AE(AutoEncoder)的一种,但它的做法(或者说它对网络的诠释)是别具一格的。在VAE中,它的Encoder有两个,一个用来计算均值,一个用来计算方差,让人意外:Encoder不是用来Encode的,是用来算均值和方差的;此外均值和方差都是统计量,这里是用神经网络来计算。 事实上,VAE本质上就是在我们常规的自编码器的基础上,对encoder的结果(在VAE中对应着计算均值的网络)加上了“高斯噪声”,使得结果decoder能够对噪声有鲁棒性;而那个额外的KL loss(目的是让均值为0,方差为1),事实上就是相当于对encoder的一个正则项,希望encoder出来的东西均有零均值。 另外一个encoder(对应着计算方差的网络)的作用用来动态调节噪声的强度的。直觉上来想,当decoder还没有训练好时(重构误差远大于KL loss),就会适当降低噪声(KL loss增加),使得拟合起来容易一些(重构误差开始下降);反之,如果decoder训练得还不错时(重构误差小于KL loss),这时候噪声就会增加(KL loss减少),使得拟合更加困难了(重构误差又开始增加),这时候decoder就要想办法提高它的生成能力了。两者是对抗的过程。重构损失希望p(Z|X)的方差越小越好(噪声越小,重构越容易),KL损失希望它的方差越接近1越好。
2022-10-04 15:45:06 7.96MB 自编码器 变分自编码器
1
使用稀疏自编码器实现高光谱图像异常探测 其中包含: 1、训练部分 train_SAE_pytorch.py 2、探测部分 Anomaly_detection.py 3、用到的读取数据集的函数 datasets.py 4、圣地亚哥机场高光谱数据集 sandiego_plane.mat
2022-07-30 09:08:28 3.06MB 高光谱图像 异常探测 图像处理 python
1
近年来,深度学习在计算机视觉领域中的表现优于传统的机器学习技术,而图像分类问题是其中最突出的研究课题之一。传统的图像分类方法难以处理庞大的图像数据,且无法满足人们对图像分类精度和速度的要求,而基于深度学习的图像分类方法突破了此瓶颈,成为目前图像分类的主流方法。从图像分类的研究意义出发,介绍了其发展现状。其次,具体分析了图像分类中最重要的深度学习方法(即自动编码器、深度信念网络与深度玻尔兹曼机)以及卷积神经网络的结构、优点和局限性。再次,对比分析了方法之间的差异及其在常用数据集上的性能表现。最后,探讨了深度学习方法在图像分类领域的不足及未来可能的研究方向。
1
自编码器算法非常简单,实现方便,训练也较为稳定,相对于PCA算法,神经网络的强大表达能力可以学习输入的高层抽象的隐藏特征向量z,同时也能够基于z重建出输入。这里基于FashionMNIST数据集进行图片重建实战。 说明文档:https://blog.csdn.net/qq_43753724/article/details/125862444?spm=1001.2014.3001.5501
2022-07-19 09:07:32 15KB 神经网络 tensorflow keras 深度学习
1
Convolutional Auto-Encoders卷积自编码器的Matlab代码,可以运行caeexamples.m对手写数据mnist_uint8进行训练测试
2022-07-06 08:42:35 10KB CAE 卷积自编码器 Matlab 深度学习
1
torch实现自编码器-Pytorch卷积自动编码器
2022-06-08 09:44:43 29KB pytorch python 人工智能 深度学习
1