为了验证股票的价格运动与过去应该是相似的这一假设,运用K近邻算法,将价格运动简单划分为涨跌两类进行预测,进行假设验证。使用滑窗方法比较现在的价格运动与何时的历史价格更为相似,将多个K近邻模型组合成集成模型,实现模型的泛化和策略收益的调整。使用中证500指数的历史价格数据进行预测实证,2017年~2018年9月的预测结果显示单个K近邻模型策略获得76.72%的收益,现在的价格运动与遥远的过去更为相似,集成模型能更好地控制风险。该模型利用K近邻模型的含义验证了股票价格运动具有相似性,可以作为证券交易的择时策略。
2022-05-23 23:22:51 600KB k近邻
1
基于LSTM模型的股票价格预测 基于LSTM模型的股票价格预测 基于LSTM模型的股票价格预测 基于LSTM模型的股票价格预测 基于LSTM模型的股票价格预测 基于LSTM模型的股票价格预测 基于LSTM模型的股票价格预测 基于LSTM模型的股票价格预测 基于LSTM模型的股票价格预测 基于LSTM模型的股票价格预测 基于LSTM模型的股票价格预测 基于LSTM模型的股票价格预测 基于LSTM模型的股票价格预测 基于LSTM模型的股票价格预测 基于LSTM模型的股票价格预测 基于LSTM模型的股票价格预测 基于LSTM模型的股票价格预测 基于LSTM模型的股票价格预测 基于LSTM模型的股票价格预测 基于LSTM模型的股票价格预测 基于LSTM模型的股票价格预测 基于LSTM模型的股票价格预测 基于LSTM模型的股票价格预测 基于LSTM模型的股票价格预测 基于LSTM模型的股票价格预测 基于LSTM模型的股票价格预测 基于LSTM模型的股票价格预测 基于LSTM模型的股票价格预测 基于LSTM模型的股票价格预测 .......
2022-05-01 16:06:36 4.48MB lstm 人工智能 rnn 深度学习
【达摩老生出品,必属精品,亲测校正,质量保证】 资源名:MATLAB实现股票价格预测 源程序代码.rar 资源类型:matlab项目全套源码 源码说明: 全部项目源码都是经过测试校正后百分百成功运行的,如果您下载后不能运行可联系我进行指导或者更换。 适合人群:新手及有一定经验的开发人员
股票价格预测器:建立LSTM递归神经网络来预测股票市场价格
1
股票价格预测器 该项目包括多种机器学习和深度学习算法,可以预测各个公司的股价。
2021-12-30 02:16:41 569KB Python
1
股票价格预测 目录 介绍 该项目是我对Udacity的数据科学家纳米学位计划的基本项目。 我们将实现两种机器学习算法(移动平均值和LSTM)来预测公司的未来股价。 然后,我们从这两种算法中选择最佳算法来开发自己的股价预测指标。 该项目包括Python脚本,交易者可以在其中输入历史股票价格数据以获得训练有素的LSTM模型。 然后,可以使用经过训练的模型来预测未来的股票价格。 该项目随附的博客文章 档案说明 股票价格预测.ipynb-用于股票价格预测的Jupyter笔记本。 train.py-借出历史股价数据并训练LSTM模型的Python脚本。 Forecastor.py-用于借出历史股价数据和将来预测股价的Python脚本。 文件夹:数据 排爆INTC.csv -历史股价数据从 。 文件夹:型号 model.pkl-腌制文件中经过训练的LSTM模型。 scaler.gz-保存在存档文
2021-12-28 22:34:13 957KB HTML
1
基于主成分分析(PCA)和反向传播神经网络,建立库存预测模型,以云南白药(000538)为例,从库存技术分析中选择29个指标,降维后输入神经网络。通过对不同参数数据实验中均方误差(MSE)和均方绝对误差(MAE)的比较和分析,进一步确定网络的隐层节点数量,学习速率,激活功能和训练功能。 最后,获得了具有稳定性和准确性的模型。
2021-12-19 20:07:44 618KB BP神经网络 PCA 股票价格预测
1
随机森林模型选股matlab代码使用趋势确定性数据准备技术比较用于股票预测和股票指数走势的机器学习算法。 如果您喜欢演示文稿而不是自述文件,我们建议您查看该项目 :triangular_flag: 目录 :light_bulb: 介绍 2014年,来自苹果公司的SCPD学生Di Xinjie Di提交了一篇论文,重点是预测一家公司近期的股价走势。 特征空间源自股票本身的时间序列,并关注过去价格的潜在变动。 树算法被应用于特征选择,它表明股票技术指标的一个子集对于预测股票趋势至关重要。 实验结果表明,使用 SVM 算法预测 3-10 天平ASP格趋势的准确率超过 70%。 Jigar Patel、Sahil Shah、Priyank Thakkar、K. Kotecha在Elsevier出版公司旗下的Expert Systems with Applications期刊上发表的另一篇论文引用自Patel, J. 等人。 使用趋势确定性数据准备和机器学习技术预测股票和股价指数走势。 Expert Systems with Applications (2014)解决了预测印度股票市场股票和股票价格指数运动方向的问题。 该论文将人工神经网络 (AN
2021-11-19 15:20:59 6.57MB 系统开源
1
StockPricePrediction:使用python实现股票价格预测
2021-11-13 19:13:22 79KB JupyterNotebook
1