基于密度和距离积的聚类中心选取方法.pdf
2021-08-20 09:13:37 209KB 聚类 算法 数据结构 参考文献
基于密度峰值选取聚类中心的优化.pdf
2021-08-20 01:24:53 319KB 聚类 算法 数据结构 参考文献
基于密度函数的FCM聚类中心初始化研究综述.pdf
2021-08-20 01:22:50 326KB 聚类 算法 数据结构 参考文献
利用matlab实现16QAM信号平方定时的程序,可以识别是否是16QAM
2021-08-18 18:18:21 3KB 16QAM 平方定时
1
传统的k-means算法对初始聚类中心敏感,聚类结果随不同的初始输入而波动。为消除这种敏感性,提出一种优化初始聚类中心的方法,此方法计算每个数据对象所在区域的密度,选择相互距离最远的k个处于高密度区域的点作为初始聚类中心。实验表明改进后的k-means算法能产生质量较高的聚类结果,并且消除了对初始输入的敏感性。 关键词:数据挖掘;聚类;k-means算法;聚类中心
1
在配送系统中,配送中心选址问题与在此基础上的车辆路径问题相互影响,属于NP-hard难题,为有效解决定位-车辆路径问题(LRP),文中提出的两阶段算法设计结合了聚类算法和混合遗传是算法,针对实际情况在遗传算法中加入爬山算法,同时采用改进的自适应交叉、变异算法,确保种群的最优个体参与进化,提高了遗传算法的局部搜索能力。仿真实验表明,所改进的混合遗传算法有较好高的全局寻优能力,且其收敛速度快,是解决配送路径优化问题的有效方法。
1
传统的K-means算法随机选取初始聚类中心,聚类结果不稳定,容易陷入局部最优解。针对聚类中心的敏感性,提出一种优化初始聚类中心的K-means算法。此算法利用数据集样本的分布特征计算样本点的密度并进行分类,在高密度区域中选择K个密度最大且相互距离超过某特定阈值的点作为初始聚类中心,并对低密度区域的噪声点单独处理。实验证明,优化后的算法能取得更好的聚类效果,且稳定性增强。
2021-03-23 11:20:45 116KB 聚类 K-means算法 密度 聚类中心
1
密度峰值聚类算法(Density Peaks Clustering,DPC),是一种基于密度的聚类算法,该算法具有不需要指定聚类参数,能够发现非球状簇等优点。针对密度峰值算法凭借经验计算截断距离[dc]无法有效应对各个场景并且密度峰值算法人工选取聚类中心的方式难以准确获取实际聚类中心的缺陷,提出了一种基于基尼指数的自适应截断距离和自动获取聚类中心的方法,可以有效解决传统的DPC算法无法处理复杂数据集的缺点。该算法首先通过基尼指数自适应截断距离[dc],然后计算各点的簇中心权值,再用斜率的变化找出临界点,这一策略有效避免了通过决策图人工选取聚类中心所带来的误差。实验表明,新算法不仅能够自动确定聚类中心,而且比原算法准确率更高。
2021-03-15 11:36:33 743KB 论文研究
1
K均值和C均值聚类,实现间隔采样,绘制三维聚类中心轨迹,实现道路标志检测
2019-12-21 21:55:30 641KB 聚类算法 聚类中心 matlab
1
改进的K-means聚类算法初始聚类中心确定,采用matlab实现,2016a的matlab,直接打开文件、添加路径就可以使用了。
2019-12-21 20:35:23 3KB K-means聚类
1