变电站缺陷检测数据集,标注为VOC格式 表计读数有错--------bjdsyc: 657 个文件 表计外壳破损--------bj_wkps: 481 个文件 异物鸟巢--------------yw_nc: 834 个文件 箱门闭合异常--------xmbhyc: 368 个文件 盖板破损--------------gbps: 568 个文件 异物挂空悬浮物-----yw_gkxfw: 679 个文件 呼吸器硅胶变色-----hxq_gjbs: 1140 个文件 表计表盘模糊--------bj_bpmh: 828 个文件 绝缘子破裂-----------jyz_pl: 389 个文件 表计表盘破损--------bj_bpps: 694 个文件 渗漏油地面油污-----sly_dmyw: 721 个文件 未穿安全帽-----------wcaqm: 467 个文件 未穿工装--------------wcgz: 661 个文件 吸烟--------------------xy: 578 个文件
2025-06-18 15:03:51 102KB 缺陷检测
1
用光源、 USB 摄像头、 LabVIEW 构建一个视觉检测系统,采集 PCBA 图像,并检测电解电容元件的极性是否插反。 从 USB 摄像头捕获 PCBA 图像, 保存图像(保存为 PNG 图片), 制作电容元件模板,并在线实时检测。 制作电容元件模板后保存模板图像(保存为 PNG 图片) 和电容元件的位置、 内外圆半径、极性方向等信息(保存为二进制文件*.dat)。 利用 Hough 变换测量电容元件顶视图的内外圆半径和圆心,为图像定位做准备。
2025-06-15 18:30:22 4.64MB 视觉检测 毕业设计 labview
1
钢轨表面缺陷检测数据集:包含400张图片与八种缺陷类别,适用于目标检测算法训练与研究。,钢轨表面缺陷检测数据集 总共400张图片,8种类别缺陷 txt格式,可用于目标检测 ,核心关键词:钢轨表面缺陷检测;数据集;400张图片;8种类别缺陷;txt格式;目标检测。,"钢轨表面缺陷检测数据集:400张图片,八类缺陷标注清晰,支持目标检测" 钢轨作为铁路运输系统的重要组成部分,其表面缺陷的检测对于保障铁路安全运行至关重要。随着计算机视觉技术的发展,利用目标检测算法进行钢轨表面缺陷的自动检测已成为研究热点。在这一背景下,钢轨表面缺陷检测数据集的出现,为相关领域的研究者提供了宝贵的研究资源。 钢轨表面缺陷检测数据集共包含了400张图片,每张图片中均标记了八种不同类别的钢轨表面缺陷。这些缺陷类别包括但不限于裂纹、磨损、压坑、剥离、锈蚀、波磨、轨距异常以及接头不平顺等。这些缺陷的准确检测对于铁路部门进行及时维护和修复工作,确保铁路的安全性和运行效率具有重要意义。 数据集以txt格式进行标注,这意味着每张图片都配有详细的文字说明,标明了缺陷的具体位置和类别。这种格式的数据对于目标检测算法的训练尤为重要,因为它们为算法提供了学习的样本和标注信息,有助于算法准确地识别和定位钢轨表面的缺陷。 目标检测技术在钢轨表面缺陷检测中的应用,可以大幅度提高检测效率和准确性。与传统的人工检测方法相比,自动化的目标检测技术不仅能够减少人力资源的投入,还能有效避免人工检测中可能出现的遗漏和误差。更重要的是,利用机器学习和深度学习算法,目标检测技术能够不断学习和改进,从而达到更高的检测精度。 在计算机视觉领域,目标检测是识别图像中物体的位置和类别的重要技术。研究者们通过构建大量包含各种目标的图像数据集,并利用标注信息训练目标检测模型。钢轨表面缺陷检测数据集正是这样一个专门针对铁路领域应用的数据集。通过对该数据集的研究和应用,可以开发出更加精准的检测模型,为铁路行业的自动化监测提供技术支持。 值得注意的是,数据集的规模和质量直接影响目标检测算法的性能。钢轨表面缺陷检测数据集中的400张图片和清晰的八类缺陷标注,为研究者们提供了一个理想的训练和验证环境。通过在这样的数据集上训练目标检测模型,可以有效地评估模型的泛化能力和对不同缺陷的检测效果。 钢轨表面缺陷检测技术的发展还与铁路运输行业的需求紧密相连。随着铁路运输量的增加,对于铁路基础设施的维护要求也越来越高。为了适应大数据时代的需求,钢轨表面缺陷检测技术也必须不断地进行创新和升级。数据集的出现,不仅为技术研究提供了物质基础,也为技术创新提供了可能。 钢轨表面缺陷检测数据集的发布,为铁路安全领域提供了重要的技术支持。通过利用现代计算机视觉技术,结合大规模、高质量的数据集,研究者们有望开发出更加智能和高效的钢轨缺陷检测系统,从而提高铁路运输的安全性和可靠性。同时,该数据集的使用也促进了计算机视觉技术在特定行业应用的研究进展,为其他领域的技术应用树立了良好的示范作用。
2025-06-12 16:18:59 168KB
1
代码的主要作用是对一系列图像进行处理,以检测和分类图像中的药丸。以下是代码的详细解释: 初始化和图像读取: dev_close_window() 和 dev_update_off() 用于关闭显示窗口和关闭自动更新显示。 read_image(ImageOrig, 'blister/blister_reference') 用于读取参考图像。 创建切割模式: 通过阈值分割、形态学变换和区域定位,创建一个用于后续图像中药丸室切割的模式。 图像预处理: threshold, shape_trans, orientation_region, area_center 等函数用于图像的预处理,包括阈值分割、形态变换、区域定位和方向计算。 创建药丸室模式: 使用 gen_rectangle2 和 concat_obj 创建药丸室的模式,这些模式将用于后续图像的分割。 图像对齐和分割: 对每个图像进行阈值分割、形态学变换和区域选择,然后使用仿射变换对图像进行对齐和分割。 具体见附件代码.
2025-06-12 13:11:33 3.19MB
1
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-06-10 20:15:12 3.17MB matlab
1
MATLAB是一种高性能的数值计算和可视化软件,广泛应用于工程计算、数据分析、算法开发等领域。在印刷行业中,印刷品缺陷检测是保证产品质量的关键环节,而MATLAB因其强大的图像处理能力,被广泛应用于印刷品缺陷检测系统的开发中。 本压缩包文件中包含的MATLAB界面版本-印刷品缺陷检测系统,很可能是为了解决实际生产中的印刷品缺陷问题。这个系统的特点是基于MATLAB的图形用户界面(GUI),使得非专业的操作人员也能够简便地进行缺陷检测工作。通过该系统,用户可以加载印刷品图像,使用内置的算法对图像进行分析,从而识别出各种类型的缺陷,如划痕、污点、色彩偏差、图案对位不准确等。 在系统内部,可能采用了一系列图像处理技术,如图像预处理、边缘检测、区域生长、纹理分析、机器学习等方法来实现缺陷的检测。这些方法能够对印刷品图像进行精细的分析,将正常印刷区域与存在缺陷的区域区分开来。例如,在图像预处理阶段,可能包含了去噪、对比度增强等步骤,以提高缺陷识别的准确度。 为了提高系统的易用性和交互性,MATLAB界面版本的印刷品缺陷检测系统可能还包含了诸如参数设置、缺陷报告生成功能。这意味着用户可以根据具体的检测需求,调整算法参数,优化检测效果。检测完成后,系统可以输出一份详细的缺陷报告,报告中可能包含了缺陷的类型、位置、大小等信息,方便质量控制人员快速定位问题并采取相应的补救措施。 此外,该系统可能还具有学习能力,即通过不断积累的印刷品样本数据,系统能够自我优化,提高缺陷识别的准确率。在机器学习领域,这种能力被称为自适应或自学习,是现代缺陷检测系统的一个重要发展方向。 MATLAB界面版本-印刷品缺陷检测系统为印刷品质量控制提供了一种高效的解决方案。它不仅能够快速准确地识别印刷品中的缺陷,而且通过友好的用户界面,降低了操作的技术门槛,使非专业人士也能轻松上手。这种系统对于提高印刷品的质量,降低生产成本,提高生产效率具有重要的意义。
2025-05-26 07:04:43 4.18MB
1
从kaggle上的RLE格式转过来的,一共有6666张图片和标签,classes文件已经在包里了,直接用labelimg打开即可,种类是1234,因为源文件的RLE标签里的分类就是这几个数字,没有声明数字对应的缺陷种类是什么 今年年初搞的,不过这个数据集想获得比较好的训练结果似乎很难
2025-05-22 20:53:52 616.18MB 数据集
1
基于YOLOV8的智能道路缺陷检测系统:实现裂缝、交通设施及坑槽洼地的高效识别,创新点融合PyQt界面优化UI体验,支持图像视频输入直接获取检测结果。,基于YOLOV8算法的道路缺陷智能检测系统:实现裂缝、交通设施及坑槽洼地精准识别,创新点融合PyQt界面与UI操作体验优化,基于YOLOV8道路缺陷检测,系列实现道路场景的裂缝、交通设施、坑槽洼地等区域的检测, pyqt界面+创新点 UI界面,支持图像视频输入直接获取结果 ,基于YOLOV8; 道路缺陷检测; 裂缝检测; 交通设施检测; 坑槽洼地检测; pyqt界面; 创新点; UI界面; 图像视频输入,基于YOLOV8的智能道路场景检测系统:UI界面加持的检测方案与创新点
2025-05-11 15:27:52 342KB xhtml
1
内容概要:本文详细介绍了如何使用MATLAB实现钢板表面缺陷的检测与分类。首先通过对原始图像进行灰度变换、对比度增强和滤波处理,提高图像质量。接着采用全局优化阈值分割将缺陷从背景中分离出来,并提取二值图像区域的边界坐标。随后进行特征提取,如面积、周长、圆形度等,为后续分类做好准备。使用支持向量机(SVM)等有监督学习算法对缺陷进行分类,并计算划痕的位置和大小。最后,设计了一个友好的GUI界面,使用户能够方便地加载图片、执行检测流程并查看结果。整个系统的代码结构清晰,运算速度快,具备良好的可扩展性和实用性。 适合人群:从事工业质检、计算机视觉、图像处理等相关领域的研究人员和技术人员。 使用场景及目标:适用于钢铁制造企业或其他涉及金属加工的企业,旨在提高产品质量,减少人工检测的工作量和误差。具体目标包括快速准确地识别和分类钢板表面的各类缺陷,如划痕、凹坑、裂纹等。 其他说明:文中不仅提供了详细的代码示例,还分享了许多实践经验,如如何调整阈值以避免漏检浅划痕,以及如何优化GUI设计以提升用户体验。此外,作者强调了在实际应用中需要注意的一些细节问题,如处理反光现象和确保坐标系正确映射等。
2025-05-09 14:21:31 2.08MB
1
样本图:blog.csdn.net/2403_88102872/article/details/144195908 文件太大放服务器下载,请务必到电脑端资源详情查看然后下载 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):419 标注数量(xml文件个数):419 标注数量(txt文件个数):419 标注类别数:10 标注类别名称:["bypass_diode","bypassed_substrings","defect_string","hot_module","hotspot","open_circuit-","overheated_connection","pid","reverse_polarity","suspected_pid"]
2025-04-26 01:34:46 407B 数据集
1