多自由度非线性振动问题是历史性国际难题,其求解方法有数值解和渐近解析解或两者结合。基于近代有限元和子结构模态综合法的动力学建模方法,获得非线性系统动力学微分方程,其自由度几乎没有限制,对左端首次近似齐次方程进行模态分析,选取对响应有贡献的部分本征对,同样对右端激励和非线性伪力作模态变换,得到减缩后非线性系统耦合动力学微分方程。用数值方法求出系统非线性响应进行定量分析,也可获得在指定参数的变动中可能发生的主谐、超谐、亚谐和组合共振,极限环和分岔、混沌等各种非线性振动现象,但其缺点是不能作一般性定性分析。渐近
2021-11-22 11:31:56
303KB
工程技术
论文
1